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Abstract

We present a penalized method to approach multi-level problems occurring in opti-
mal pricing of communication networks. This allows to overcome the difficulty arising
from the non uniqueness of different level problems solutions. We prove existence of
approximated solutions, give convergence result with Hoffman-like assumptions. We
end with cost value error estimates.

1 Introduction

Price and revenue optimization in the areas of transport and telecommunications networks
is a very active domain of research and has received a considerable attention in the recent
literature. See, for example, [5, 6, 8, 12, 14]

The principal motivation of this work, is the theoretical study of a new regularization
technique for solving the short time optimal pricing of links in packet switched communi-
cation networks.
This problem belongs to a large class of important and strategic economic problems that
can be viewed as some asymmetric games. The leader (a telecommunication company)
have to price the arcs of its subnetwork in order to maximize some revenue function. This
revenue function is in general a part of the cost function that minimizes the strategy of
the follower (the user). The leader must take into account the reaction (or any possible
reaction when non unique) of the follower. This problem, in its best case version (i.e. if
multiple optimal reaction of the follower are possible, the follower is supposed to choose
in favor of the leader) can be modelled using a bi-level program. We consider that such
program is ill posed when the lower level ( user strategies) can have multiple solutions for
each (or some) fixed leader’s variables.

These programs are very difficult nonconvex optimization problems. Several heuristics
or approximation techniques can be found in the recent literature [5, 6, 8, 12, 14] . In
almost all these works, strong assumptions are made to simplify the model. The solutions
of the lower level are supposed unique or at least to correspond to the same upper level
revenue.
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The lower level is replaced by the equivalent optimality conditions and considered as
an equilibrium problem. The complementarity part of these optimality condition is then
smoothed or penalized using different techniques.
In our approach we consider the realistic situation with different possible reactions of
the follower and multiple revenues. We first present the problem of optimal pricing of
links communication networks (O.P.L.C.N) and then consider general ill posed bi-level
programs.

1.1 The O.P.L.C.N model

Let G = (V,E) be a directed graph, where V is a set of p nodes , E is a set of n arcs
(n = n1 + n2, the first n1 arcs are those to be priced ) and K a set of K commodities to
be routed through the network represented by G.
Each commodity k has a unique source ok and a unique sink pk. We denote by A the
node-arc incidence matrix of G. A is an p× n matrix such that each column is related to
an arc e ∈ E and has only two nonzero (−1, 1) coefficients in those rows associated with
(respectively ) the origin and the destination node of e. We will decompose A := [A1A2]
where the columns of A1 correspond to the first n1 arcs.
The arcs of the network have a maximal capacity c ∈ Rn for all commodities. W denote
by bk ∈ Rp, for k ∈ K, a vector of supplies/demands for commodity k at the nodes of the
network

bk
i =


+rk if i = ok,

−rk if i = pk,

0 elsewhere,

where rk is the value of the flow of the kth commodity.
Each commodity will be satisfied if there exists a vector (xk

1, x
k
2)

T ∈ Rn1+n2 such that

A1x
k
1 + A2x

k
2 = bk.

The capacity constraints have to be satisfied by the contributions of the all K commodities∑
k∈K

(xk
1, x

k
2)

T ≤ C.

We will denote x1 := (x1
1, x

2
1, ..., x

K
1 )T and x2 := (x1

2, x
2
2, ..., x

K
2 )T .

The revenue function of the leader (to be maximized) is of the form

fu(y, x1).

( In the “linear” case, this function is yT
∑
k∈K

xk
1)

and the follower’s cost function (to be minimized) is of the form

fl(y, x1, t, x2).
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( In the “linear” case, this function is yT
∑
k∈K

xk
1 + tT

∑
k∈K

xk
2.)

y are the leader’s optimization variables ( unit costs on the first n1 arcs in the linear case)
and t are some fixed parameters corresponding to the unit costs of the rest of the arcs in
the linear case.
We remark that, due to the partial or total linearity on x, the follower can have multiple
optimal strategies corresponding to different revenues for fixed values of y.
The best case bi-level model is then

(OPLCN)



max fu(y, x1)
y ∈ Cy

(x1, x2) ∈ argminfl(y, x1, t, x2)
A1x

k
1 + A2x

k
2 = bk ∀k ∈ K∑

k∈K
(xk

1, x
k
2)

T ≤ C

(x1, x2) ≥ 0.

,

Depending on the nature of the demands and the function fl, the lower level can be of
different types. To get an extensive description of these different multicommodity flow
problems and numerical methods used for their resolution we refer to [7, 11].

1.2 General ill posed bi-level programs

Let us consider the general bi-level problem :

(P)

{
max f(y, x)
y ∈ K , x ∈ S(y) ,

where K and C are non empty convex, closed, bounded subsets of Rn and

S(y) = argmin { f(y, z) + g(y, z) |z ∈ C }, (1.1)

f and g are smooth functions from Rn × Rn to R. Moreover, for each y ∈ K, f(y, .) and
g(y, .) are convex (we shall precise assumptions later). The main difficulty comes from
the fact that the cost “function” f(y, x) , x ∈ S(y) is multivalued application since S(y)
is not reduced to a singleton. In addition, it is not clear that f(y, x) = f(y, x̃) for any
x, x̃ ∈ S(y). Therefore, it is difficult to compute the solutions (if there are any).

The paper is organized as follows. We present the penalized problem and give an
existence result in next section. Section 3 is devoted to an asymptotic analysis and we
prove that the cluster points of solution to the penalized problems are solutions of a
three-level limit problem . In section 4 we give error estimates.
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2 The penalized problem

We would like to let the upper level revenue function single valued. So we are going to
use a penalization process that allow to compute approximate solutions more easily. More
precisely, ε > 0 being given, we consider the following penalized problem

(Pε)

{
max f(y, x)
y ∈ K , x ∈ Sε(y) ,

where
Sε(y) = argmin {hε(y, z) |z ∈ C }, (2.1)

where
hε(y) = f(y, z) + g(y, z) + ε(f(y, z))2 . (2.2)

In what follows, we shall note h = f + g(= ho).
For each nonnegative ε, the bi-level problem (Pε) is well posed . Furthermore, under some
general and non restrictive assumptions on f and g we will prove that the upper level
function is single valued and continuous with respect to the leader variables y.

This regularization technique makes some selection property on the solutions of the
lower level problem which is easy to characterize and have an explicit and simple economic
interpretation. In almost all other regularization methods, the lower level is replaced by
its optimality conditions. The bi-level problem is then considered as a mathematical
program with equilibrium constraints. The “hard” part of these constraints ( namely
the complementarity conditions ) is then smoothed or penalized. For ill posed problems,
these methods make also some selection on the solution set of the lower level but these
selections do not have any economic interpretation and convergence results need more
restrictive assumptions.

From now we assume that

f and g are continous with respect to both variables x and y . (2.3)

Lemma 2.1 For any ε > 0, the low-level problem

Qε,y =

{
minhε(y, z)
z ∈ C ,

admits (at least) a solution so that Sε(y) 6= ∅. Moreover, there exists a constant κy ∈ R
such that

∀x ∈ Sε(y) f(y, x) = κy .

Proof - Qε,y may written as follows
minh(y, z) + εt2

t− f(y, z) = 0 ,

z ∈ C , t ∈ R
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The existence of such a (convex, smooth) problem is classical. As the problem is strictly
convex with respect to t the solution is unique with respect to t. Therefore f(y, ·) is
constant on Sε(y). 2

Lemma 2.2 Let be ε > 0 fixed. The multi-application Sε is lower semi-continuous in the
following sense : if yk → y and xk ∈ Sε(yk) then xk → x ∈ Sε(y) (up to a subsequence).

Proof - Let be xk ∈ Sε(yk) ⊂ C. As C is bounded, then (xk) is bounded as well and
converges to some x (up to a subsequence). As xk ∈ Sε(yk) we get

∀z ∈ C h(yk, xk) + ε (f(yk, xk))
2 ≤ h(yk, z) + ε (f(yk, z))2 .

As f and h are continuous with respect to yand x we obtain

∀z ∈ C h(y, x) + ε (f(y, x))2 ≤ h(y, z) + ε (f(y, z))2 ,

that is x ∈ Sε(y). 2

Lemma 2.3 Let be ε > 0 fixed. The cost function

vε : y 7→ {f(y, x) | x ∈ Sε(y) }

is single-valued and continuous.

Proof - We see that the function vε is single valued, with Lemma 2.1. Let us prove the
continuity: let be (yk) a sequence that converges to some y. Then vε(yk) = f(yk, xk) where
xk ∈ Sε(yk). Lemma 2.2 yields that xk converges (up to a subsequence) to x ∈ Sε(y). As
f is continuous with respect to y and x we get

vε(yk) = f(yk, xk) → f(y, x) = vε(y) .

2

We may now give an existence result :

Theorem 2.1 For any ε > 0, problem (Pε) admits at least an optimal solution yε.

Proof - As vε is continuous and K is bounded, the result follows. 2

3 Asymptotic results

3.1 An convergence result for problem (P)ε

Now we study the behavior of solutions of (Pε) as ε to 0. First, we introduce some
notations:

S̃(y) = argmin{f2(y, z) |z ∈ S(y) }, (3.1)
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where S(y) is given by (1.1) and

(P̃)

{
max f(x, y)
y ∈ K , x ∈ S̃(y) ,

(3.2)

Note that problem (P̃) is a three-level problem that can be written in an extended way
as follows:

(P̃)


max f(x, y)
y ∈ K

x ∈ argmin
{
f2(y, z) |z ∈ argmin { f(y, w) + g(y, w) |w ∈ C }

}
,

Lemma 3.1 x ∈ S̃(y) is equivalent to

x ∈ S(y) and ∀z ∈ C such that h(y, z) = h(y, x), f2(y, z) ≥ f2(y, x) .

Proof - Assume that z satisfies h(y, z) = h(y, x) with x ∈ argmin {h(y, t) | t ∈ C }. Then
z ∈ argmin {h(y, t) | t ∈ C }. 2

Lemma 3.2 Let y be fixed. If xε ∈ Sε converges to some x̄, then x̄ ∈ S̃(y)

Proof - Assume xε ∈ Sε and xε → x̄ as ε → 0. For every z ∈ C we get

h(y, xε) + εf2(y, xε) ≤ h(y, z) + εf2(y, z) .

When ε → 0, as the functions are continuous we obtain

∀z ∈ C h(y, x̄) ≤ h(y, z) ,

that is x̄ ∈ S(y).
Let be x̃ ∈ C such that h(y, x̃) = h(y, x̄). Then

h(y, xε) + εf2(y, xε) ≤ h(y, x̃) + εf2(y, x̃) since x̃ ∈ C

≤ h(y, x̄) + εf2(y, x̃) since h(y, x̃) = h(y, x̄)
≤ h(y, xε) + εf2(y, x̃) since xε ∈ C and x̄ ∈ S(y) .

Therefore
∀x̃ ∈ C such that h(y, x̃) = h(y, x̄), f2(y, xε) ≤ f2(y, x̃) .

Passing to the limit with the continuity of f gives

∀x̃ ∈ C such that h(y, x̃) = h(y, x̄), f2(y, x̄) ≤ f2(y, x̃) .

With Lemma 3.1 we conclude that x ∈ S̃(y). 2

Next Lemma is the most important in the sequel: it deals with a continuity property
of the multi-application Sε.
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Lemma 3.3 Let (yε, xε ∈ Sε(yε)) converging to (ȳ, x̄) . Then x̄ ∈ S̃(ȳ).

Assume that we have proved this lemma for the moment. We may give an asymptotic
result for problem (P)ε.

Theorem 3.1 Let yε an optimal solution to (P)ε. Then yε converges to some ȳ (up to a
subsequence) and ȳ is an optimal solution to (P̃).

Proof - Let yε an optimal solution to (P)ε. Then yε ∈ K which is bounded. So (extracting
a subsequence) we may assert that yε converges to ȳ. As K is closed then ȳ ∈ K. As yε

is an optimal solution to (P)ε we have

∀ỹ ∈ K ,∀x̃ε ∈ Sε(ỹ) f(yε, xε) ≥ f(ỹ, x̃ε) (3.3)

where xε ∈ Sε(yε). Note that x̃ε ∈ Sε(ỹ) implies that x̃ε ∈ C. So x̃ε is bounded and
converges to x̃ (up to a subsequence) with x̃ ∈ S̃(ỹ) (Lemma 3.2).
Passing to the limit in (3.3) gives

∀ỹ ∈ K ,∃x̃ ∈ S̃(ỹ) such that f(ȳ, x̄) ≥ f(ỹ, x̃) ,

where x̄ is the limit (of a subsequence) of xε. Lemma 3.3 shows that x̄ ∈ S̃(ȳ).
Thanks to the definition of S̃(ỹ) we note that f(ỹ, ·) is constant on S̃(ỹ), namely

∀z ∈ S̃(ỹ) f(ỹ, z) = f(ỹ, x̃) .

Finally
∀ỹ ∈ K, ∀x̃ ∈ S̃(ỹ) f(ȳ, x̄) ≥ f(ỹ, x̃) ,

with x̄ ∈ S̃(ȳ). This means that ȳ is an optimal solution to (P̃). 2

3.2 Proof of Lemma 3.3

Let yε converging to ȳ and xε ∈ Sε(yε). As xε ∈ C (bounded) one may extract a subse-
quence converging to x̄. We are going to prove that x̄ ∈ S̃(ȳ).
Let us set

αε = h(yε, xε) + o(ε) , (3.4)

and
Λε = {x ∈ C |h(yε, x) ≤ αε } . (3.5)

We first prove that x̄ ∈ S(ȳ). As xε ∈ Sε(yε) we have

∀z ∈ C h(yε, xε) + ε f2(yε, xε) ≤ h(yε, z) + ε f2(yε, z) ; (3.6)

as f and g are continuous, passing to the limit gives

∀z ∈ C h(ȳ, x̄) ≤ h(ȳ, z) ,
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that is x̄ ∈ S(ȳ).
Let x̃ ∈ S(ȳ). Suppose for a while that ∃ε̃ such that

∀ε ≤ ε̃ x̃ ∈ Λε . (3.7)

We get
h(yε, x̃) ≤ h(yε, xε) + o(ε) ;

with relation (3.6) this gives

∀z ∈ C h(yε, x̃) + ε f2(yε, xε) ≤ h(yε, z) + ε f2(yε, z) + o(ε) . (3.8)

As x̃ ∈ C relation (3.6) yields as well

h(yε, xε) + ε f2(yε, xε) ≤ h(yε, x̃) + ε f2(yε, x̃) .

Adding these two relations gives

∀z ∈ C h(yε, xε) + 2ε f2(yε, xε) ≤ h(yε, z) + ε f2(yε, z) + ε f2(yε, x̃) + o(ε) ; (3.9)

the choice of z = xε implies

ε f2(yε, xε) ≤ ε f2(yε, x̃) + o(ε) ,

that is
f2(yε, xε) ≤ f2(yε, x̃) +

o(ε)
ε

.

Passing to the limit gives finally

∀x̃ ∈ S(ȳ) f2(ȳ, x̄) ≤ f2(ȳ, x̃) .

This means that x̄ ∈ S̃(ȳ).
Unfortunately, there is no reason for “assumption ” (3.7) to be satisfied and we must

get rid of it. We are going to adapt the previous proof (we gave the main ideas). If x̃ /∈ Λε

then we perform a projection: we call x̃ε the projection of x̃ on Λε. We are going to show
that x̃εconverges to x̃.
As x̃ /∈ Λε we get αε < h(yε, x̃) . Let us call σαε(h) the following real number

σαε(h) = inf
x∈[αε<h(yε,·)]

h(yε, x)− αε

d(x,Λε)
, (3.10)

where d(x,Λε) is the distance between x and Λε) and

[αε < h(yε, ·)] = { x ∈ Rn | αε < h(yε, x)} .

This so called Hoffman constant can be defined following for instance Azé and Corvellec
[2]. Therefore

h(yε, x̃)− αε ≥ d(x̃,Λε) σαε(h) .
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As d(x̃,Λε) = d(x̃, x̃ε) we obtain

d(x̃, x̃ε) ≤
h(yε, x̃)− αε

σαε(h)
.

We have to estimate σαε(h). In particular we look for σo > 0 such that

∀ε σαε(h) ≥ σo .

In [2], it is shown that
σαε(h) ≥ inf

h(yε,x)=αε

|∇xh(yε, x)| ,

where |∇xh(yε, x)| stands for the strong slope of h at (yε, x) with respect to x ([2]); the
strong-slope of a function ϕ at x is defined as

|∇ϕ|(x) :=

 0 if x is a local minimum of ϕ ,

lim sup
y→x

ϕ(x)− ϕ(y)
d(x, y)

otherwise

Assume we can find σo > 0 and εo > 0 such that

∀ε ≤ εo inf
h(yε,x)=αε

|∇xh(yε, x)| ≥ σo , (3.11)

then
d(x̃, x̃ε) ≤

h(yε, x̃)− αε

σo
=

h(yε, x̃)− h(yε, xε) + o(ε)
σo

→ 0 .

Indeed yε → ȳ, xε → x̄, h is continuous and h(ȳ, x̄) = h(ȳ, x̃).
We may now end the proof. We can use relation (3.9) with x̃ε instead of x̃ so that

∀z ∈ C h(yε, xε) + 2ε f2(yε, xε) ≤ h(yε, z) + ε f2(yε, z) + ε f2(yε, x̃ε) + o(ε) ;

we choose z = xε once again to get

f2(yε, xε) ≤ f2(yε, x̃ε) +
o(ε)
ε

.

Passing to the limit as ε → 0 gives (for every x̃ ∈ S(ȳ)

f2(ȳ, x̄) ≤ f2(ȳ, x̃) .

This means that x̄ ∈ S̃(ȳ). 2

Remark 3.1 It is clear that assumption (3.11) is satisfied if h is linear (“linear” case).
Next problem is to find simple conditions for (ȳ, x̄) to get (3.11) when h is not linear. One
hint is to assume that h is C1 and that ‖∇xh(ȳ, x̄‖ 6= 0; then the strong slope |∇xh(yε, x)|
coincides with the norm ‖∇xh(yε, x)‖ of the gradient of h with respect to x. With the
convergence of (yε, xε) to (ȳ, x̄) (up to a subsequence), there exist εo and η > 0 such that

∀ε ≤ εo ‖∇xh(yε, xε)‖ ≥ η > 0 ;

next we have to prove that ‖∇xh(yε, x)‖ ≥ η for any x such that h(yε, x) = αε. A good
tool could be an “local inversion theorem” for the multivalued case but it is not obvious.
The problem is still open. We have the same challenge in next section.
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3.3 Comparison of (P) and (P̃)

Now, it is clear that a solution of the penalized problem (Pε) is a good approximation of
a solution of (P̃). Anyway, it is not a solution (a priori) of the problem in consideration
(P). So we have to compare (P) and (P̃).

The second level of (P̃) clearly disappears when the solutions set of the lower level of
the initial problem corresponds to the same revenue for each value of y (or are unique).
In this case (P) and (P̃) are equivalent. In other cases, the solution of (P̃) corresponds to
some “optimal worst” case solution.

This solution is still important for the decision makers of the upper level problem.

Remark 3.2 Using the same regularization technique, if we replace ε(f(y, z))2 by ε(g(y, z))2

in the definition of hε, we will obtain (at the limit) an optimal solution of (P) which cor-
responds to an optimal best case solution of our asymmetric game .

4 Error estimates

In this section we assume that the function f is nonnegative.

4.1 Preliminary results

Lemma 4.1 Let be ε > ε′ > 0 and y ∈ K. Let be xε ∈ Sε(y) and x̃ ∈ Sε′(y) Then we get

f2(y, xε) ≤ f2(y, x̃) .

Proof - Let us fix ε > ε′ > 0 and choose some y ∈ K. Let be xε ∈ Sε(y) and x̃ ∈ Sε′(y).
Assume that

f2(y, x̃) < f2(y, xε) . (4.1)

As x̃ ∈ Sε′(y) and xε ∈ C, we have

h(y, x̃) + ε′f2(y, x̃) ≤ h(y, xε) + ε′f2(y, xε) ,

h(y, x̃) + ε′f2(y, x̃) + (ε− ε′)f2(y, x̃) ≤ h(y, xε) + ε′f2(y, xε) + (ε− ε′)f2(y, x̃)

With (4.1) and ε > ε′ > 0, we obtain

h(y, x̃) + εf2(y, x̃) ≤ h(y, xε) + ε′f2(y, xε) + (ε− ε′)f2(y, xε) < h(y, xε) + εf2(y, xε)

So
h(y, x̃) + εf2(y, x̃) < argmin { h(y, x) + εf2(y, x), x ∈ C}

and we get a contradiction. 2
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Lemma 4.2 Let be ε > ε′ > 0 and yε (respectively yε′) a solution to (Pε) (respectively
(Pε′)). Let be xε ∈ Sε(yε) and xε′ ∈ Sε′(yε′) Then

f2(yε, xε) ≤ f2(yε′ , xε′) ≤ f2(y∗, x∗) ,

where y∗ is a solution to (P̃) with x∗ ∈ S(y∗).

Proof - Using Lemma 4.1 with y = yε and xε ∈ Sε(yε) gives

∀x̃ ∈ Sε′(yε) f2(yε, xε) ≤ f2(yε, x̃) . (4.2)

As yε′ is a solution of (Pε′) we get

∀y ∈ K, ∀x ∈ Sε′(y) f(yε′ , xε′) ≥ f(y, x) .

We may choose in particular y = yε and x = x̃ ∈ Sε′(yε) to get

∀x̃ ∈ Sε′(yε) f(yε′ , xε′) ≥ f(yε, x̃) . (4.3)

As f is assumed to be nonnegative we finally obtain

f(yε, xε) ≤ f(yε, x̃) ≤ f(yε′ , xε′) .

Therefore the family (f(yε, xε) is increasing. The convergence of f(yε, xε) to f(y∗, x∗) (f
is continuous) achieves the proof since f(y∗, x∗) is the limit and the upper bound of the
family (f(yε, xε)) . 2

Lemma 4.3 Let be ε > 0 and x̃ε ∈ Sε(y∗) where y∗ is a solution to (P̃). Then

∀xε ∈ Sε(yε) f(y∗, x̃ε) ≤ f(yε, xε) ≤ f(y∗, x∗) . (4.4)

Proof - This is a direct consequence of Lemma 4.2 : the relation f(yε, xε) ≤ f(y∗, x∗) is
obvious. and the relation f(y∗, x̃ε) ≤ f(yε, xε) comes from the fact that yε is a solution to
(Pε). 2

The purpose of this subsection is to study the behavior of f(y∗, x∗)−f(yε, xε) as ε → 0
and provide (if possible) an error estimate. The previous lemmas show that it is sufficient
to study f(y∗, x∗)− f(y∗, x̃ε) for some x̃ε ∈ Sε(y∗).
We assume from now that C is polyhedral :

C = { x ∈ Rn | Ax = b, x ≥ 0 } ,

where A is a m× n real matrix and b ∈ Rm.
In the sequel y∗ is a solution to (P̃) (which existence is given by Theorem 3.3 ) and

x∗ ∈ S̃(y∗) ( see (3.1)) so that

x∗ ∈ argmin { f2(y∗, z) | z ∈ argmin {h(y∗, ζ) , ζ ∈ C} } .
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Let us denote

α∗ = h(y∗, x∗) = f(y∗, x∗) + g(y∗, x∗) and β∗ = f(y∗, x∗) . (4.5)

Note that β∗ is the optimal value for (P̃) (the upper level) so that we may assume that
β∗ 6= 0 (otherwise the problem is trivial). We set

C∗ = { x ∈ C | h(y∗, x) ≤ α∗ and f(y∗, x) ≤ β∗ } . (4.6)

Let us give an important property of C∗ :

Proposition 4.1 Assume y∗ is a solution to (P̃) and C∗ is defined with (4.6), then

C∗ = { x ∈ C | h(y∗, x) = α∗ and f(y∗, x) = β∗ }

and
C∗ = { x ∈ C | h(y∗, x) + f(y∗, x) ≤ σ∗

def
:= α∗ + β∗ } .

Proof - Note that it impossible to get h(y∗, x) ≤ α∗, if x ∈ C∗. Indeed, as x∗ ∈ S̃(y∗)
then x∗ ∈ S(y∗) = argmin {h(y∗, ζ) , ζ ∈ C} . Therefore :

∀ζ ∈ C h(y∗, x∗) ≤ h(y∗, ζ) . (4.7)

Setting ζ = x ∈ C∗ gives

α∗ = h(y∗, x∗) ≤ h(y∗, x) ≤ α∗ .

So
∀x ∈ C∗ h(y∗, x) = α∗ .

The same remark holds for β∗ so that

C∗ = { x ∈ C | h(y∗, x) = α∗ and f(y∗, x) = β∗ } . (4.8)

Let us call
C ′ = { x ∈ C | h(y∗, x) + f(y∗, x) ≤ σ∗ } .

It is obvious that C∗ ⊂ C ′. Conversely, let be x ∈ C ′. Relation (4.7) yields α∗ ≤ h(y∗, x)
so that

α∗ + f(y∗, x) ≤ α∗ + β∗ .

This gives f(y∗, x) ≤ β∗. Similarly, we get h(y∗, x) ≤ α∗ and x ∈ C∗. 2

The main point is now to estimate (roughly speaking) the distance between the solution x∗

and Sε(y∗). As x∗ ∈ C∗ and C∗ is defined with inequalities, we first assume a Hoffman-type
condition.
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4.2 Error estimates under an Hoffman hypothesis

Following Azé and Corvellec [2] we know that

inf
[σ∗<f(y∗,·)+h(y∗,·)]

|∇x (f(y∗, ·) + h(y∗, ·)) | ≤ inf
x∈[σ∗<f(y∗,·)+h(y∗,·)]

f(y∗, x) + h(y∗, x)− σ∗

d(x, [f(y∗, ·) + h(y∗, ·) ≤ σ∗]
.

The notation [σ∗ < f(y∗, ·) + h(y∗, ·)] stands for the set

{x ∈ Rn | σ∗ < f(y∗, x) + h(y∗, x) } .

We note that [f(y∗, ·) + h(y∗, ·) ≤ σ∗] = C∗. In this subsection, we assume the following

(H1) γ∗ := inf
[σ∗<f(y∗,·)+h(y∗,·)]

|∇x (f(y∗, ·) + h(y∗, ·)) | > 0.

Let us call γ =
1
γ∗

: assumption (H1) implies that

∀ε > 0, ∀x̃ε ∈ Sε(y∗) ∃x∗ε ∈ C∗ s.t. ‖x̃ε − x∗ε‖ ≤ γ [f(y∗, x̃ε) + h(y∗, x̃ε)− α∗ − β∗] .

(4.9)
Note also that relation (4.4) of Lemma 4.3 yields that

∀x̃ε ∈ Sε(y∗) f(y∗, x̃ε) ≤ β∗

and
h(y∗, x̃ε) ≤ α∗ + εβ∗

because of the definition of Sε(y∗).Therefore

∀x̃ε ∈ Sε(y∗) f(y∗, x̃ε) + h(y∗, x̃ε)− α∗ − β∗ ≤ ε

and
∀ε > 0, ∀x̃ε ∈ Sε(y∗) ∃x∗ε ∈ C∗ s.t. ‖x̃ε − x∗ε‖ ≤ γε . (4.10)

The existence of such Lipschitzian error bound for convex or general inequalities is, itself,
an interesting domain of research. It is strongly related to metric regularity properties. A
large number of conditions and characterizations can be found in [2, 3, 9, 10, 13, 15, 16].
This list of references constitutes a small but significant part of the existing literature.

Remark 4.1 1. Assumption (H1) is fulfilled if the functions f and g are linear with
respect to x. Indeed they cannot be identically equal to 0 and the strong slope coincides
with the norm of gradient which is a positive constant.
2. x∗ε is the projection of x̃ε on C∗.

Lemma 4.4 Both x̃ε ∈ Sε(y∗) and x∗ε given by (4.10) converge to x∗ ∈ S(y∗) as ε → 0.
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Proof - We know that x̃ε → x∗ (with the previous results). Let us set dε =
x̃ε − x∗ε

ε
. As

dε is bounded (by γ) it clear that x∗ε and x̃ε have the same limit point (namely x∗). 2

In what follows x̃ε is an element of Sε(y∗) and x∗ε is the associated element given by
(4.10) .
Let us define

I(x∗) = {i ∈ {1, · · · , n} | x∗i = 0 } , and C̃ = { d ∈ Rn | Ad = 0 , d|I(x∗) ≥ 0 } .

Let d be in C̃.
Then, there exists εd > 0 such that ∀ε < εo, x∗ε + εd ∈ C . Indeed

• A(x∗ε + εd) = A(x∗ε) + εAd = A(x∗ε) = b .

• If i ∈ I(x∗), then (x∗ε + εd)i ≥ x∗ε,i ≥ 0.

• If i /∈ I(x∗), then x∗i > 0. As x∗ε → x∗,∃εi such that x∗ε,i > 0 forall ε ≤ εi. Then we
choose η = inf

i/∈I(x∗)
{εi} so that

∀ε ≤ η x∗ε,i > 0 .

Now choosing εd ≤ η small enough we get (x∗ε + εd)i ≥ 0 for any ε ≤ εo.

As x̃ε ∈ Sε(y∗) and x∗ε + εd ∈ C we have

h(y∗, x̃ε) + εf2(y∗, x̃ε) ≤ h(y∗, x∗ε + εd) + εf2(y∗, x∗ε + εd) ,

h(y∗, x̃ε)− h(y∗, x∗ε + εd) + ε
[
f2(y∗, x̃ε)− f2(y∗, x∗ε + εd)

]
≤ 0 .

As the functions are C1, we have

h(y∗, x̃ε) = h(y∗, x∗ε) +∇xh(y∗, x∗ε) · (x̃ε − x∗ε) + (x̃ε − x∗ε)o(x̃ε − x∗ε)

h(y∗, x̃ε) = h(y∗, x∗ε) + ε∇xh(y∗, x∗ε) · dε + εdε o(εdε) , (4.11)

and
h(y∗, x∗ε + εd) = h(y∗, x∗ε) + ε∇xh(y∗, x∗ε) · d + εd o(εd) , (4.12)

where ∇xh stands for the derivative of h with respect to x. As x∗ε ∈ C∗ and x̃ε ∈ C then

h(y∗, x∗ε) = α∗ = h(y∗, x∗) ≤ h(y∗, x̃ε) .

With relation (4.11) this gives

∇xh(y∗, x∗ε) · dε + dε o(εdε) =
h(y∗, x̃ε)− h(y∗, x∗ε)

ε
≥ 0 .
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As dε is bounded (by γ), there exist cluster points; passing to the limit gives

∇xh(y∗, x∗) · d̃ = lim
ε→0

∇xh(y∗, x∗ε) · dε ≥ 0 , (4.13)

for any cluster point d̃ of the family dε.
In addition, we obtain with (4.11) and (4.12)

ε∇xh(y∗, x∗ε)·dε+εdε o(εdε)−ε∇xh(y∗, x∗ε)·d−εd o(εd)+ε
[
f2(y∗, x̃ε)− f2(y∗, x∗ε + εd)

]
≤ 0 ,

that is

∇xh(y∗, x∗ε) · (dε − d) + dε o(εdε)− d o(εd) +
[
f2(y∗, x̃ε)− f2(y∗, x∗ε + εd)

]
≤ 0 .

Passing to the limit (with Lemma 4.4) we obtain

∇xh(y∗, x∗) · (d̃− d) ≤ 0 , (4.14)

where d̃ is a cluster point of the sequence dε and any d ∈ C̃. As d = 0 belongs to C̃, we
get

∇xh(y∗, x∗) · d̃ ≤ 0 .

Finally, we obtain with (4.13)

∇xh(y∗, x∗) · d̃ = lim
ε→0

∇xh(y∗, x∗ε) ·
x̃ε − x∗ε

ε
= 0 . (4.15)

This means that
∇xh(y∗, x∗ε) · (x̃ε − x∗ε) = o(ε).

As
h(y∗, x̃ε) = h(y∗, x∗ε)−∇xh(y∗, x∗ε) · (x∗ε − x̃ε) + (x∗ε − x̃ε) o(x∗ε − x̃ε)

we get
h(y∗, x̃ε)− h(y∗, x∗ε) = o(ε)− εdε o(εdε) = o(ε) .

As x∗ε ∈ C∗ then h(y∗, x∗ε) = α∗ and

∀x̃ε ∈ Sε(y∗) h(y∗, x̃ε) = h(y∗, x∗) + o(ε) . (4.16)

As h and f2 play similar roles we have the same result for f2. More precisely

∀x̃ε ∈ Sε(y∗) f2(y∗, x̃ε)− f2(y∗, x∗) = o(ε) . (4.17)

We just proved the following result
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Theorem 4.1 Assume that (H1) is satisfied ; let yε be a solution to (Pε) and x̃ε ∈ Sε(y∗).
Then

h(y∗, x̃ε)− h(y∗, x∗) = o(ε) and f2(y∗, x̃ε)− f2(y∗, x∗) = o(ε) as ε → 0 .

Moreover
∀xε ∈ Sε(yε) f(y∗, x∗)− f(yε, xε) = o(ε) as ε → 0 .

Proof - The first assertion has been proved : relations (4.16) and (4.17) . We use relation
(4.4) and the previous result to claim that

f2(y∗, x∗)− f2(yε, xε) = o(ε) .

As f2(y∗, x∗) − f2(yε, xε) = [f(y∗, x∗) + f(yε, xε)] [f(y∗, x∗) − f(yε, xε)] and f(y∗, x∗) +
f(yε, xε) → 2f(y∗, x∗) = 2β∗ we get the result since β∗ 6= 0. 2

With a bootstrapping technique we obtain the following corollary ;

Corollary 4.1 Under the assumptions and notations of the previous theorem, we get
∀xε ∈ Sε(yε)

∀n ∈ N f(y∗, x∗)− f(yε, xε) = o(εn)

and ∀x̃ε ∈ Sε(y∗)
h(y∗, x̃ε)− h(y∗, x∗) = o(εn) .

Proof - Using relations (4.16) and (4.17) in assumption (H1) we see that relation (4.10)
becomes

∀ε > 0, ∀x̃ε ∈ Sε(y∗) ∃x∗ε ∈ C∗ s.t. ‖x̃ε − x∗ε‖ ≤ γo(ε) . (4.18)

Using the same technique leads to relations (4.16) and (4.17) with ε2 instead of ε and so
on. 2

4.3 Error estimates under a “second-order” assumption

If assumption (H1) is not ensured, one may, however, give estimates if the following
hypothesis is satisfied

(H2)

{
∃εo > 0 ,∃δ > 0, such that ∀x ∈ C∗ + B(0, εo)

∃x̃ ∈ C∗ such that ‖x− x̃‖2 ≤ δ
[
(h(y∗, x)− α∗)+ + (f(y∗, x)− β∗)+

]
Remark 4.2 (H2) means that C∗ is H-metrically regular (of the second order). (See the
definition of this regularity property for example in [1] Def. 4.3.2). (H2) also corresponds
to a quadratic growth condition [4] Def.3.1 .
This assumption is significantly weaker than (H1) and covers a large class of problems
since it is satisfied when h(y∗, .) + f(y∗, .) is linear or quadratic.
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We have a rather similar result which proof is the the same as in the previous subsection
(so that we do not detail it) :

Theorem 4.2 Assume that (H2) is satisfied ; let yε be a solution to (Pε) and xε ∈ Sε(yε).
Then

f(y∗, x∗)− f(yε, xε) = o(
√

ε) as ε → 0 , so that

∀τ > 0 f(y∗, x∗)− f(yε, xε) = o(ε1−τ ) .

Moreover, ∀x̃ε ∈ Sε(y∗)

∀τ > 0 h(y∗, x̃ε)− h(y∗, x∗) = o(ε1−τ ) .

5 Conclusion

With this new penalization approach we are able to “solve” more general bi-level problems
as usual ones. In fact we do not solve the limit problem of course but the approximated
one. We have given error estimates that proved that the approximation is reasonable.
Next step is the numerical realization and the comparison with current methods
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