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Abstract: In the framework of future launchers design studies, CNES and ONERA
are studying possible improvements of tools and methods for trajectory optimiza-
tion. Trajectory optimization of reusable launch vehicle (RLV) is a very complex
task calling for a versatile tool, which should be able to address - either simulta-
neously or separately - ascent and reentry trajectory phases. Improvement can be
made in comparison with existing methods and tools regarding issues such as the
global processing of ascent and reentry phases, or specific constraints of reentry
phases. In this context, a first candidate for a new optimization method is currently
being studied. This method is an adapted interior point algorithm, associated with
a Runge-Kutta discretization scheme of the optimal control problem. In this paper
we will focus on the presentation of the RK method to use, the error estimation
and the mesh refinement policy to use in order to have an optimal complexity and
then a fast algorithm. Copyright ©2004 IFAC
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INTRODUCTION

This paper! deals with so-called transcription

numerical methods for optimal control problems;
we refer to (Betts, 1998) for a survey of numer-
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ical optimal control. Our motivation is the need
of better algorithms for optimizing trajectories
for reusable launch vehicles (RLV), where sev-
eral paths are to be optimized simultaneously.
Indeed, for RLVs improvements are needed in
various fields of optimization : in time of calcu-



lation, in path constraint treatment and in global
trajectories mission resolution.

In this paper we concentrate on the strategy of
refinement of the discretization mesh.

We choose an interior point algorithm associated
with a RK discretization scheme of the optimal
control problem. The RK method will be de-
tailed in Part 1. Then we choose to minimize
the number of points of this discretization for
the first moment of optimization procedure, and
when we get closer to the solution, we refine
the mesh in order to reach the solution as fast
as possible. An error estimate is then required
and a refinement procedure is needed too. Part
2 of this paper will present this aspect of the
method. Finally we will apply our method to
an ascent trajectory of an academic problem
inspired from the Venture Star concept. We end
with numerical experiments.

1. DISCRETIZATION OF OPTIMALITY
CONDITIONS

To compute the solution of the continuous opti-
mality condition we need to discretize them. We
have chosen the Runge-Kutta method.

1.1 Optimal control and symplectic integration

In order to certify the optimality we have to con-
sider good co-state with a controlled error. We
want to choose the RK coefficients so that the
integration has a pre-determined order, which
characterizes the method’s precision. The order
of the method can be assessed from the coef-
ficients through equations called “order condi-
tions”.

In his paper (Hager, 2000) Hager gives explicit
conditions (up to order four) for optimality sys-
tems deriving from Runge-Kutta discretization
of the state equation. The order conditions for
Hager’s partitioned RK methods can be com-
puted by noting that these methods are sym-
plectic (Hairer and Wanner, 1996).

Consider the following unconstrained optimal
control problem :

Min ®(y(T));
y(t) = ( (t),yt), telo,T]; (P)
y(0) =",

Indeed, the interior point methodology reduces
constrained optimal control problem to uncon-
strained ones (see Wright in (Wright, 1997;
Wright, 2001; Wright and Jarre, 1999; Laurent-
Varin et al., 2003)).

First order necessary optimality conditions are :
yt) = flult),y(?)), .,
5(t) = £, (u(®). 9(0) (1),
p(T) = @'(y(T)), yTO) =y,
0 = fu(u(®),y(t)" p(t).
We have to integrate a Hamiltonian system that
can be discretized by a partitioned Runge-Kutta

method, but we can also discretize the initial
problem and then work on the discrete one.

Min @(yn);

Yk+1 = Yk + hi Z bi f (Uki, Yri )
Si:l (DP)
ki = Yk + b Y aij f g, ves),
j=1

(00)

Yo = yo-

We omit £k =0,...,N —1, i=1,...,s. After
some algebraic computation and the hypotheses
of b; # 0 (see (Hager, 2000)) we exactly obtain
a specific discretization of the continuous opti-
mality conditions (OC) :

Yk+1 = Yk + hi Z bi f (Ukis Yri)s
=1
Yki = Y + N Z aij f(Ukj, Ykj),
=1
Dk+1 = Pk + hi Z [;ify(yki; i) pri,
=1
Pri = P+l Y aig fy (ks ung) prj
=1
0 = fulyr, ur)” P,
0 = fulYnisuki) " Pris
Yo = yoa PN = (I)/(yN)'
(DOC)
. bib; — bia;; ..
Where : b= b and a,; = Jbiﬂaﬂ for all 7, ;.

This partitioned RK method happens to be sym-
plectic : (Hairer and Wanner, 1996, Theorem
4.6). In particular the following diagram com-
mutes, when we use the above discretization.

discretization
(P) ————— (DP)
optimality optimality (D)
conditions conditions
(0C) M (DOC)

See the presentation of Runge-Kutta and sym-
plectic methods in the books (Hairer et al., 2002;
Hairer et al., 1993).

The order ' of the scheme (DOC) is equal to
the one r of (DP) if r < 2, but may be smaller if
r > 2. Hager gives the four additional conditions
for having r =’ when r = 3 and 4.

Finally we obtain a set of non-linear equations
to solve. In order to solve these equations, we



will use a classical Dogleg method (see (Conn et
al., 2000)).

2. ERROR ANALYSIS AND MESH
REFINEMENT

Whereas optimal control softwares commonly
achieve error estimation on primal variables
without caring about dual state (see (Betts,
2001)). We show here how, with a symplectic
method, to establish a refinement policy in the
resolution process with a good error on co-state
and then a certificate of optimality. Indeed, large
error on integration of the co-state could lead to
control strategy that is far from being optimal.
This analysis is, however, restricted for the time
being to unconstrained problems.

Then, we have to solve a set of equations ob-
tained by discretization of the optimality condi-
tions. But, the discretization produces an error
compared with the exact solution. Moreover the
non-perfect Newton resolution generates another
error compared with the solution. In this part,
we would like to analyze the distance to the exact
solution in order to know when we have to refine
the mesh during the resolution process while
minimizing the complexity of the algorithm.

We should notice that the number of operations
at each iteration of Newton is proportional to
the number of discretization points.

2.1 Newton method and discretization

2.1.1. Newton method Consider the following
non-linear equation to be solved with a Newton
method : G(z) = 0. The distance between the
solution x given by the Newton method, and
the exact solution Z may be estimated by the
Newton step :

r—1=G"(2)"'G(x) + o(||x — Z||?).

We can assess the value of this estimate by
looking at the ratio of reduction of the norm of
G after the previous Newton step. Of course this
estimate is meaningless if G’(z) is not invertible
or z is far from .

2.1.2. Ezact optimality conditions We have to
solve an unconstrained optimal control problem
for which we need to solve the optimality condi-
tions of the following type :

¥ =Hp(y,u,p), p=—Hy(y,u,p),
0 = Hu(y7uap)7 (1)
0 = F(y(0),p(0),y(T),p(T)).
Denote © = (y, p) and let ¢(x() be the exact flow
associated to the integration of the Hamiltonian

system from 0 to T, the control being eliminated
by the implicit functions theorem applied to the
condition : 0 = H,(y, u,p). Thus, the two points
boundary value problem could be written with
Fas:

F((0), ¢(x(0))) = 0.

2.1.8. Discretization  As seen before, system
(1) is discretized with a symplectic RK method.
Consider the numerical flow ¢}, of the discretized
system. With notations of (DOC), ¢n,(yo,po) is
equal to (yn,pn)-

Denote by h € H the discretization, where H is
the set of discretization, defined as follows :

Definition 1. H is the set of positively valued
finite sequences summing to 7', i.e; h € H if and
only if :

e Ing e N, Vn, n >ng< h, =0;

o > hy=T.

For Runge-Kutta type methods, it is possible to
estimate the principal term error, i.e. to evaluate
a function v such that :

¢(x) = on(@) = Yn(x) +o(Yn(z)).  (2)

2.1.4. From discrete resolution to the exact con-
tinuous solution  Since the exact flow ¢ is not
known, we solve the following approximate prob-
lem :

F(z1(0), ¢n(2n(0))) = 0. ()

Denote F(z) = F(z, ¢(z)), Fn(x) = F(z, ¢n(z)),
and let Z, Zj, be zeroes of F and F,, respectively.
We have :

Fn(z) — F(x) = Ap(x) + o(vn(z)),
where Ay (z) := —02F (z, ¢p(x))(Yn(2)).

Now, let us estimate the distance from the point
2 when Fj,(x) is small, to the solution Z of the
continuous problem.

o —z=F, " (2)Fn(z) — F; (2)An(@)
+o(lle — z) + o(| An(@)]))-

The principal term can be viewed as a sum of
two components :

. ]:}'L—l(g;)fh(x) which estimates x — x5, and
o —F} '(x)An(x) which estimates ), — Z

Then we can estimate the error due to the
Newton resolution and discretization. In the
next section we concentrate on the refinement
of discretization



2.2 Discretization refinement

We assume in this part that the integration
method used is a p order method, i.e. the local
error on an interval hy is of the form Ckhﬁﬂ.
Hence, if we split the interval hj into ¢ subin-
tervals of size hy /gy, then the new estimate error
is qr.Cr(hy/qr)PT = q;,"Cphh™. Moreover, we
would like to minimize the number of points to
add in order to have an optimal complexity of
the algorithm. In the sequel we use the sum
of estimated local errors as an estimate of the
global error, i.e. ¢,(xz). Then, let us set the
problem of reducing the (estimated) global error
to a given threshold F with a minimal number
of additional time steps. The problem will be to
find ¢ = (q1,92,..,qn) in NV of the following
problem :

N N,
. k
Min E qx; E <FE
geNY I P

(INP)
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where e, := C}, hﬁ“. Note that this modelization
is only asymptotically correct i.e., if hy is too
large, the error is not of the form ey /q}.

2.8 Optimal refinement

In this part, let us slightly generalize the problem
by denoting (I P) the following integer program :

N N
Min qu; Zekf(%) <FE (IP)
k=1 k=1

geENN

with f: N — R, convex and decreasing.

The optimal refinement problem corresponds to
f(z) = 1/2P. Obviously, if lim f = 0, then
problem (IP) is feasible. Let us show how to
compute the solution of (IP).

Definition 2. Let us define the mazximal marginal
gain g and the mazimal gain inder k,; which
expresses the maximum error reduction obtained
by adding only one point. We have :

9(q) == maxer (flgr) — flax + 1)) (4)

Algorithm 1. Primal Algorithm

For k=1,...,N do ¢q; := 1. End for
While Y"1, exf(qr) > E do
Compute kg, the maximal gain index.
qk, = qk, T 1.
End While

We can now prove that this algorithm leads to
the optimal solution of (IP) with the following
proposition :

Proposition 8. Assume (IP) feasible, then the
algorithm finds the solution of problem (IP)
with O((R 4+ N)log N) operations, where R is
the number of new points.

Because of a question of space the demonstration
does not appear on this paper.

3. APPLICATION TO A SINGLE STAGE
LAUNCHER TRAJECTORY

We take the example of a single-stage RLV,
like the Venture Star concept. For simplification
purpose, we choose to consider the problem in
two dimensions, with a perfectly round and non-
rotating earth, no-J; gravity and an exponential
atmosphere. The vehicle is expected to reach
a given altitude with a given horizontal veloc-
ity, while minimizing the propellant consumed
during the mission (the thrust and the mass
flow-rate are constant). The control variable is
the pitch 6, and we assume that the thrust is
collinear to the vehicle’s axis (so the pitch defines
the angle between the thrust and the horizontal
axis). Denote h the altitude, V' the velocity, T is
the thrust, 6 the pitch, ¢ the latitude and « the
angle of attack.

3.1 Problem characteristics

Table 1. Boundary conditions

Initial conditions | Final conditions
h 0 [m] 250  [km]
ol 0 [deg] free
V| 100 [m/s] 7.75  [km/s]
~ 90  [degl 0 [degl

The launcher lifts-off vertically at altitude zero.
We set an initial vertical speed of 100 m/s in or-
der to avoid singularity issues. At the end of the
mission, the vehicle should reach an altitude of
250 km with a horizontal velocity corresponding
to the injection into a circular orbit with this
altitude.

3.1.1. Thrust force We choose a motor with
constant mass flow rate and Isp, and hence
constant thrust. Numerical values, summarized
in Table 2, include the total initial mass my,

Table 2. Thrust characteristics

mo = 106 [kg]
Isp = 420 [s]
(T/W) = 12
¢ = mo(T/W)o/Isp [kg/s]
= 2857.1 [kg/s]
T = qgolsp [n]
= 1.18107 [v]




specific impulse Isp, mass flow rate ¢, thrust T,
and initial thrust-to-weight ratio (7'/W)o.

3.1.2. Aerodynamic forces Denote the aerody-
namic forces D and L for drag and lift respec-
tively. We have :

D= CDQS'ref ; L= CLQSr€f7
where the aerodynamic coefficient Cp and Cp,
depend on angle of attack o = 6 — v, dynamic
pressure @ := % pV? and reference surface of the
launcher S,.r. We choose :

Cp=C%; Cp =C% +kC?,
with numerical values from Table 3.

Table 3. Aerodynamic characteristics

0.3
460  [m?]

c? = 18 k
C% = 013  Spey

3.2 Dynamics of problem

The free final time T is a parameter of the prob-

lem. We choose to consider it as an additional
state variable (with a null dynamic). Using the

normalized time s = ¢/Ty (belonging to [0, 1]),
we can use the following equations of dynamics :
dh
s
do
as

= TyVsinn,

*Tf

cos y

h+ Ry

dv T D X
— =Ty |—cosa— — —gsiny|,
ds m m

d~vy T L \%4 g
— =Ty sina + — + | ———— — — J cosvy|,
ds mV mV h + Ry \4

ary
ds
The control variable 6 appears implicitly in
«a and then in L and D. We should notice
that physical quantities are scaled in order not
to have numerical problem. Scaled values were
chosen such as variables stay in [—10,10] (error
estimation is then scaled too).

= 0.

3.8 Cost function

Since the ejected mass-flow rate is constant, the
objective of minimizing the propellant consumed
is equivalent to minimizing the flight time, so we
take the parameter 7y as the cost function.

3.4 Numerical experience

We compare two different refinement algorithms
applied to the ascent trajectory problem. The
first one is a simple heuristics whereas the sec-
ond one solves (INP). The two algorithms are
initialized by an equidistant discretization mesh
of 20 points.

Table 4. Algorithm 1

Iteration | Number Error New
of points estimation points
1 20 4.01591 5
2 25 1.57963 7
3 32 0.78918 9
4 41 0.42241 12
13 419 0.00437117 125
14 544 0.00244748 163
15 707 0.00147779 212
16 919 0.000899956 X
Table 5. Algorithm 2
Iteration | Number Error New
of points estimation points
1 20 4.01591 768
788 0.0011063 52
3 840 0.000998684 X

Algorithm 2. First algorithm

Solve non-linear equations
While error estimation > E
Add new points in the middle of 30%
of the largest error intervals

Re-solve non-linear equations
End While

Algorithm 3. Second algorithm

Solve non-linear equations

While error estimation > F
Use optimal policy describe in Algorithm 1
Re-solve non-linear equations

End While

The Pitch 6, angle of attack o and path an-
gle v evolutions obtained after applying one or
other algorithm are given in Figure 2. We can
clearly see that « is bigger than in usual ascent
trajectory because it is not constrained in our
problem. We can see that Algorithm 2 ends with
840 points in 2 refinement steps compared to
algorithm 1 which ends with 919 in 15 refinement
steps. The target of the resolution is 0.001 (Phys-
ical quantities are scaled in order to manipulate
reduced variables evoluting in [—10, 10]).

CONCLUSION

This paper presents a preliminary work on an
discretized optimization method for solving RLV
trajectory optimization problems. First we have
studied a specific RK method called symplectic
and its interesting properties for optimal control.
Secondly we have combined an estimation of
error discretization and the resolution of an
integer linear programming problem in order to
obtain the best refinement policy we can. Finally
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we apply this method to an ascent trajectory
optimization.

This first results seems to be very promising
about refinement policy. We now have to work
on reentry trajectory optimization and then mul-
tiphase problem.
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