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M�ethodes de points int�erieurs avec d�ecomposition pour

la r�esolution de probl�emes de multi
ot

R�esum�e : Cet article introduit une approche par d�ecomposition d'une m�ethode de points
int�erieurs pour la r�esolution d'un probl�eme de multi
ot. Nous pr�esentons d'abord cette
approche dans le cadre g�en�eral de probl�emes avec contraintes couplantes. Nous proposons
ensuite de sp�ecialiser l'algorithme aux probl�emes de multi
ot lin�eaire. Nous exposons cette
sp�ecialisation en utilisant la formulation n�uds-arcs. Nous nous concentrons ensuite sur la
formulations arcs-chemins et nous proposons une m�ethode de d�ecomposition qui incorpore
la m�ethode de points int�erieurs dans la technique de d�ecomposition de Dantzig-Wolfe. Les
r�esultats num�eriques montrent la sup�eriorit�e du dernier algorithme. En�n, nous pr�esentons
des r�esultats num�eriques obtenus en testant ces algorithmes sur des probl�emes fournis par
le CNET.

Mots-cl�e : Programmation lin�eaire de grande taille, m�ethodes de points int�erieurs,
d�ecomposition, probl�emes de multi
ots, algorithme pr�edicteur correcteur.



SOLVING MULTICOMMODITY PROBLEMS 3

1 Introduction

In this paper, we are concerned with the Least cost Multicommodity Network-
ow Problem
(LMNP), which is the most studied multicommodity problem. This problem consists in the
determination of an optimal routing of the tra�c requirements when designing a network.
The �rst study of multicommodity network-
ow problems was conducted by Ford and Ful-
kerson in 1958 [FF62]. Their work inspired Dantzig and lead to the price decomposition
[Dan61]. Recently, in [CL97] Chardaire and Lisser present various approaches based on
specialization of the simplex algorithm and interior-point methods for solving non-oriented
multicommodity 
ow problems. Another recent work in the context of interior point algo-
rithms for network 
ow problems, can be found in [R�00], where it is shown that this kind
of method may be very e�ective.
For being competitive, the algorithmmust exploit the structure of multicommodity problem
to solve e�ciently Newton directions systems.
Most of specialized methods attempt to exploit in some way the block structure of the mul-
ticommodity problem. The price directive or Dantzig-Wolfe decomposition is regarded as
successful approach in [AHKL80] and belongs to the class of cost decomposition approaches
for multicommodity 
ows (see [Fra97], [GGSV97] and [Zen95] for recent variants based on
bundle methods, analytic centers, and smooth penalty functions, respectively).
The best complexity bound known for multicommodity problems is provided by an interior
point algorithm [KV96], but as yet no e�cient implementation has been obtained. The ma-
jor work in a single iteration of any Interior Point Method (IPM) consists in solving a set of
linear equations, the so-called Newton equation system (for details see [AGMX96, BGLS97]).
All general purpose IPM codes use direct approach [DER89] to solve the Newton equation
system. In [KKR93], Kamath and al. applied a variant of Karmakar's projective algorithm
using a preconditioned conjugate gradient (PCG). However, their preconditioner did not
take advantage of the multicommodity structure. In [Casar], Castro exploited this struc-
ture and presents a specialization of an interior point algorithm to multicommodity 
ow
problems. He uses both a preconditioned conjugate gradient solver, and a sparse Cholesky
factorization, to solve a linear system of equations at each iteration of the al! gorithm. Choi
and Goldfarb, in [CG90], presented a decomposition scheme similar to the one in [Casar].
But they suggest solving a dense-matrix positive de�nite linear system that appears during
the decomposition stage by means of parallel and vector processing. Some similarities were
also found between the decomposition scheme presented by Castro in [Casar] and ours pre-
sented in this paper.
The interest of our approach rests in the possibility of solving the arc-path formulation of
(LMNP). As will be shown, this formulation is more e�cient than the node-arc one.
The linear system to be solved for computing the Newton direction appears, in the case of
linear multicommodity network-
ow problems, to have the following decoupling property:
�xing the value of the coupling variables, we can solve in parallel some equations that coin-
cide with those of the Newton step for the central path associated with the subproblems.
Solving the resulting reduced system allows us to compute the Newton direction, while res-
pecting the above mentioned decomposition principle.
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4 J.F. BONNANS, M.HADDOU, A. LISSER, R.REBAI

This strategy of computing the Newton direction enables our algorithm to solve e�ciently
large problems. The interior point algorithm, presented in this paper belongs to the path
following interior point algorithms family. These algorithms focused the attention of the com-
munity because they both reach the optimal complexity known until now, i.e. convergence
within O(

p
nL) iterations, while converging quadratically [Gon92],[KMNY91]. A single ite-

ration of predictor-corrector method needs two solves of the same kind of large, sparse linear
system for two di�erent right hand sides. The resolution of these systems represents the main
computational burden of the algorithm.
The performance of the predictor-corrector algorithm relies on the e�cient solution on those
systems.
In the case of linear multicommodity network-
ow problems, to have the following decou-
pling property: �xing the value of the coupling variables, we can solve in parallel some
equations that coincide with those of the Newton step for the central path associated with
the subproblems.
This paper is organized as follows. Section 2 presents the approach by decomposition of the
interior point method in the general framework of coupling constraints problems. Section 3
describes the specialization of the algorithm to the linear multicommodity network-
ow pro-
blem. First, we present this specialization using the node-arc formulation. Then, we focus
on the arc-path formulation and we propose decomposition method witch incorporates the
interior point method into the Dantzig-Wolfe decomposition technique. Finally, we report
some numerical results in section 4.

Conventions

Given a vector x 2 IRn the relation x > 0 is equivalent to xi > 0; i = 1; 2; : : :; n, while
x � 0 means xi � 0; i = 1; 2; : : :; n. We denote IRn

+ = fx 2 IRn : x � 0g and IRn
++ = fx 2

IRn : x > 0g. Given a vector x, the corresponding upper case symbol denotes as usual the
diagonal matrix X de�ned by the vector. The symbol 1 represents the vector of all ones,
with dimension given by the context. We denote component-wise operations on vectors by
the usual notations for real numbers. Thus, given two vectors u; v of the same dimension,
uv, u=v, etc. will denote the vectors with components uivi, ui=vi, etc. We always formulate
an optimization problem as follows:(

Min
x

f(x);

s:t: g(x) � 0; (�)
(1)

where � denotes the Lagrange multipliers associated with the constraint.
We denote the null space and range space of a matrix A by N (A) and R(A) respectively.

2 Linear Optimization problems with coupling constraints

Linear coupling constraints problems usually have a very large number of variables and
constraints and arise in a great variety of applications [DW60, Dan61]. This section is concer-

INRIA



SOLVING MULTICOMMODITY PROBLEMS 5

ned with the resolution of these problems using an interior point method, the predictor-
corrector method.

2.1 Problem formulation

We consider the so called linear optimization problem with coupling constraints:8>>>>>>>><
>>>>>>>>:

Min
x0;x1;:::;xK

KX
k=0

(ck)Txk;

KX
k=0

Bkxk = b0; (�0)

Akxk = bk; k = 1 ; : : : ; K; (�k)
xk � 0; k = 0; : : : ;K; (sk)

(2)

where

� for all k 2 f0; : : : ;Kg :

{ xk, ck and sk (dual variables of xk) are elements of IRnk.

{ bk and �k (dual variable of the kth constraint) are elements of IRpk .

{ and Bk is a p0 � nk matrix.

� for all k 2 f1; : : : ;Kg: Ak is a pk � nk matrix.

Without the �rst constraints problem (2) would be separable. Indeed, each xk is in this case
solution of the linear problem

Min
z2IRnk

(ck)T z ; Akz = bk ; z � 0: (3)

One recovers the standard form of linear optimization by setting

x̂ :=

0
BB@

x0

x1
...
xK

1
CCA 2 IRnt; ĉ :=

0
BB@

c0

c1
...
cK

1
CCA 2 IRnt ; b̂ :=

0
BB@

b0

b1
...
bK

1
CCA 2 IRpt ;

and the pt � nt matrix Â =

0
BB@
B0 B1 � � � BK

A1

. . . O
O AK

1
CCA ;

where nt :=
PK

k=0 n
k and pt :=

PK

k=0 p
k. We assume that A1; : : : ; AK , and B0 have full

row rank; it follows that Â itself has full row rank. Problem (2) is equivalent to the linear
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6 J.F. BONNANS, M.HADDOU, A. LISSER, R.REBAI

optimization problem in standard form8<
:

Minx̂ ĉ
T x̂;

Âx̂ = b̂; (�̂)
x̂ � 0; (ŝ)

(4)

The Lagrange multipliers vector �̂ (2 IRpt) and ŝ (2 IRnt) can be expressed with La-
grange multipliers of problem (2). Indeed, we have

ŝ :=

0
BB@

s0

s1
...
sK

1
CCA and �̂ :=

0
BB@

�0

�1
...
�K

1
CCA :

The �rst bloc of the matrix Â corresponds to the coupling constraints. Without these
constraints, the program (4) would have a diagonal structure of which we might take ad-
vantage.

2.2 solving linear optimization problems with coupling constraints
using a predictor-corrector algorithm

We are concerned with the most popular primal-dual logarithmic barrier method called
predictor-corrector method. This name was �rst used by Mizuno, Todd and Ye in [MTY93],
where they proposed for the �rst time the method considered in this paper for the small
neighborhood case. Like them we alternate (single) primal-dual a�ne-scaling step and
(single) primal-dual centering step but using large neighborhoods of the central path [BPR00].
We choose to use this method because of its good theorical and practical properties. In-
deed, the predictor-corrector methods converges with anO(nL) iterations bound (when large
neighborhoods are used) and has asymptotically a quadratic convergence (see .e.g., Mehro-
tra [Meh92, Meh93], Ye et al [YGTZ93], Gonzaga and Tapia [GT97a, GT97b], Ye [Ye92]
and Luo and Ye [LY94]). For more details about primal-dual predictor-corrector methods,
we refer the reader to Bonnans et al [BGLS97], Roos et al [RTV97], Wright [Wri97].
Interior point methods follow the so-called center path (approximately) as a guideline to the
optimal set. Subsequently we exploit the structure of the central path equation to obtain
a reduced equation. Then, we deduce a decomposition method for computing the Newton
directions.

2.2.1 Predictor-corrector algorithm

Predictor-corrector algorithms follow the central path for solving (4). The equations of the
central path associated with the linear optimization problem in its standard form (4) are8<

:
x̂ŝ = �1;

Âx̂ = b̂;

c+ ÂT �̂ = ŝ;

(5)

INRIA
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where (x̂; ŝ; �̂) belongs to IRnt

++ � IRnt

++ � IRpt .
At each iteration, the algorithm compute an a�ne and centering Newton directions of the
following form: 8<

:
ŝû+ x̂v̂ = f̂ ;

Âû = 0;

ÂT � = v̂;

(6)

where (û; v̂; �) denotes the step associated with (x̂; ŝ; �̂), and the right hand side f̂ depends
on the algorithm.
We state in the following a predictor corrector algorithm in large neighborhoods (PCL), in
which the set N� denotes a large neighborhood de�ned by:

N� :=
n
(x̂; ŝ; �̂; �) 2 IRnt

++ � IRnt

++ � IRpt � IR++; Âx̂ = b̂; c+ ÂT �̂ = ŝ and

�1 � xs

�
� ��11; � � �0

�
:

The algorithm is as follows:

Algorithm PCL Data: �1 > 0; � 2]0; 1=2]; (x̂0; ŝ0; ŝ�0) 2 N� : j := 0
repeat

� x̂ := x̂j; ŝ := ŝj ; � := �j ;

� Corrector step: Compute (ûc; v̂c) solution of (6) with f̂ = �x̂ŝ + �1.
x̂(�) := x̂+ �ûc; ŝ(�) := ŝ + �v̂c.
Compute �c 2]0; 1] such that (x̂(�c); ŝ(�c); �) 2 N� .
x̂ := x̂(�c); ŝ := ŝ(�c).

� Predictor step: Set f̂ = �x̂ŝ. Compute (ûa; v̂a) solution of (6).
x̂(�) := x̂+ �ûa; ŝ(�) := ŝ + �v̂a ; �(�) := (1� �)� .
Compute �a, the largest value in ]0; 1[ such that
(x̂(�); ŝ(�); �(�)) 2 N� ; 8 � � �a.
x̂j+1 := x̂(�a); ŝj+1 := ŝ(�a); �j+1 := (1� �a)�j .

� j := j + 1 .

until �j < �1.
We choose the step-size for the centering displacement is as follows: starting from a unit
step, we divide the step by two until the new point belongs to the large neighborhood. This
is a rather rough linear search. Because it proved to be e�cient, we content of it. The
algorithm �nds a point such that �k � �1 in at most O(nL) iterations [BPR00].

RR n�3852



8 J.F. BONNANS, M.HADDOU, A. LISSER, R.REBAI

2.2.2 The central path

We rewrite the system (5) as follows:8>>><
>>>:

x0s0 = �1;
KX
k=0

Bkxk = b0;

c0 + (B0)T�0 = s0;

(7)

and

k 2 f1; : : : ;Kg
8<
:

xksk = �1;
Akxk = bk;
ck + (Bk)T�0 + (Ak)T�k = sk:

(8)

With a value of �0 (for which we assume that each problem (8) has an interior fea-
sible solution realizing (7) is associated some uniquely de�ned (xk(�0); sk(�0); �k(�0)), k =
1; : : : ;K, solution of the local problem (8). This local problem may be interpreted as the
equation of the central path associated with the local problem (3) where the unitary cost
vector is ck + (Bk)T�0.

We may write the central path equation in the reduced form:8>>><
>>>:

x0s0 = �1;
KX
i=0

Bkxk(�0) = b0;

c0 + B0�0 = s0:

(9)

Predictor-corrector algorithm follows the central path using Newton directions on the equa-
tion of the central path. We apply now similar considerations for computing the Newton
step.

2.3 The Newton Step

The system (6) may be written as8>>>>>>>>><
>>>>>>>>>:

s0u0 + x0v0 = f0;
KX
k=0

Bkuk = 0;

(B0)T �0 = v0;

k 2 f1; : : : ;Kg
8<
:

skuk + xkvk = fk;
Akuk = 0;
(Ak)T �k + (Bk)T �0 = vk:

(10)

We can solve this linear system as follows. For a given value of �0 we can compute in
parallel the values of (uk; vk; �k), k = 1; : : : ;K that satisfy the three last equations.

INRIA



SOLVING MULTICOMMODITY PROBLEMS 9

Let us call uk(�0), vk(�0), �k(�0) the solution of the kth local problem (8).
Note that uk(�0), vk(�0) and �k(�0) are a�ne functions of �0.
Computing the Newton step is then equivalent to solving the reduced linear system8>>><

>>>:
s0u0 + x0v0 = f0;
KX
k=0

Bkuk(�0) = 0;

(B0)T �0 = v0:

(11)

which can be interpreted as the Newton step equation of (7) in the feasible case. Once �0 is
computed, the resolution of the K systems8<

:
(i) skuk + xkvk = fk ;
(ii) Akuk = 0; k = 1; : : : ;K;
(iii) (Ak)T �k + (Bk)T �0 = vk;

(12)

may be done in parallel. For each k, this is equivalent to the computation of the Newton
direction associated to a single commodity minimum network 
ow problem.

2.4 Resolution of the reduced system

Let us see how to solve the reduced system (11). For each k 2 f1; : : : ;Kg, we consider the
system (12) and we de�ne in a classical way the scaled variables and operators :

�fk := fk=(
p
xksk); dk :=

q
xk=sk; �uk := (dk)�1uk;

�vk := dkvk; �Ak := AkDk; and �Bk := BkDk:

After scaling system (12), we obtain the equivalent relation :

k 2 f1; : : : ;Kg
8<
:

(i) �uk + �vk = �fk ;
(ii) �Ak�uk = 0;
(iii) ( �Ak)T �k + ( �Bk)T �0 = �vk:

(13)

Multiplying equation (iii.13) by �Ak on the left, and using �Ak�vk = �Ak �fk, we may express �k

as a function of �0 :
�Ak( �Ak)T �k = � �Ak( �Bk)T �0 + �Ak �fk: (14)

�Ak( �Ak)T is invertible because Ak has full row rank.
We associate with each k 2 f1; : : : ;Kg, the pk order invertible symmetric matrixNk de�ned
by: Nk = �Ak( �Ak)T .

We introduce also for each k the pk � p0 matrixMk
� and the IRpk-vector hk� de�ned respec-

tively by:
Mk

� = �(Nk)�1 �Ak( �Bk)T and hk� = (Nk)�1 �Ak �fk: (15)

RR n�3852



10 J.F. BONNANS, M.HADDOU, A. LISSER, R.REBAI

We have by (14) and (15):
�k = Mk

� �
0 + hk� : (16)

Combining with equations (iii.13) and (16), we obtain that:

�vk = Mk
v �

0 + hkv ; (17)

where

� Mk
v is a nk � p0 matrix de�ned by: Mk

v = ( �Bk)T + ( �Ak)TMk
� .

� hkv is a IRnk-vector de�ned by: hkv = ( �Ak)Thk� .

From the equations (17) and (i.13), we deduce:

uk = Mk�0 + hk; (18)

where

� Mk is a nk � p0 matrix de�ned by: Mk = �DkMk
v .

� hku is a IRnk-vector de�ned by: hk = Dk( �fk � hkv).

We also express u0 as a function of �0 by using the �rst and third equations of the system
(11). We obtain then:

u0 = M0�0 + h0; (19)

where

� M0 is a n0 � p0 matrix de�ned by: M0 = �D0(B0)T .

� h0 is a IRn
0

-vector de�ned by: h0 = f0=s0.

From (18) and (19), the reduced system (11) gives the following p-order linear system:

M�0 = h; (20)

where

� M is a p0 order invertible matrix de�ned by: M =
KX
k=0

BkMk .

� h is a IRp0-vector de�ned by: h = �
KX
k=0

Bkhk.

Solving the reduced system (11) amounts to solving system (20).

INRIA
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Remark 1 At every iteration of the predictor-corrector algorithm, two di�erent systems of
equations (20) have to be solved by computing explicitly the matrices Mk; k = 0; : : : ;K.
It is possible to solve the reduced system (11) by an iterative algorithm without expliciting
those matrixes. In this case we obtain an approximate solution of the linear system (20).
In [BPR00], the authors show that the infeasible predictor-corrector algorithm in large neigh-
borhoods remains fast under a relative perturbation of the right-hand-side of the order of 25%.
That proves the robustness of the algorithm when the Newton direction is computed approxi-
mately.

If we look more into the details of the matrixM , we check upon the following properties:

Lemma 1 The matrix M is symmetric negative de�nite.

Proof 1 Without loss of generality, let us suppose that fk = 0 and xk = sk = 1, for
k = 0; : : : ;K: Indeed, we are looking for matrix properties and neither the right hand side
term nor the positive diagonal scaling matrix has a consequence on theses properties. Using
these hypothesis and system (10), obtain�

B0M0 = �B0(B0)T ;
BkMk = �Bk[I(pk) � (Ak)T (Ak(Ak)T )�1Ak](Bk)T ; k = 1; : : : ;K:

(21)

The system (21) proves that each BiM i is symmetric for i 2 f0; 1; : : : ;Kg .

Since M =
PK

k=0B
kMk (20), M is also symmetric.

Let us check that M is negative de�nite.
We recall that B0 has full row rank. Hence B0M0 is negative de�nite.
To complete the proof, it su�ce to show that for each k 2 f1; : : : ;Kg, [I(pk)�(Ak)T (Ak(Ak)T )�1Ak]
is positive semi-de�nite.

For k 2 f1; : : : ;Kg and all yk 2 IRpk , we have yk
T
[I(pk)�(Ak)T (Ak(Ak)T )�1Ak]yk = k ~ykk2

where ~yk is the projection of yk on N (Ak).
The conclusion follows.

Remark 2 Thanks to the good properties of the linear system (20) one can use the conju-
gate gradient method for solving the reduced system as an iterative method. In this study,
we propose a generic predictor-corrector algorithm for solving linear optimization problems
with coupling constraints. For more details about using preconditioned conjugate gradient
to solve an example of those problem, we refer the reader to [Casar]. The reduced system
matrix M is known as the Schur complement [Casar]. Choi and Goldfarb in [CG90] and
also Castro in [Casar] state that the Schur complement becomes completely dense. In order
to circumvent this di�culty, Castro propose to solve the reduced system through a precondi-
tioned conjugate gradient. The preconditioner that he proposed consist of using the inverse
of M . However in the specialization proposed in [Casar], Castro takes advantage only of

RR n�3852



12 J.F. BONNANS, M.HADDOU, A. LISSER, R.REBAI

node-arc linear multicommodity problem structure.

We describe below only one Newton step of the predictor corrector algorithm PCL.

Algorithm PCLMNP

� for k 2 f1; : : : ;Kg: Compute the matrix Mk and the vector hk, using (16),(17) and
(18):

� Mk := �Dk( �Bk)T + ( �Ak)T ( �Ak( �Ak)T )�1 �Ak( �Bk)T )

� hk := Dk( �fk � ( �Ak)T ( �Ak( �Ak)T )�1 �Ak �fk).

� Compute the matrix M0 and the vector h0, using (19)

� M0 := �D0(B0)T .

� h0 := f0=s0.

� Solve the reduced system (20).

Solve the linear system M�0 = h, where

� M :=
KX
k=0

BkMk,

� h := �
KX
k=0

Bkhk.

v0 := �0 and u0 := (f0 � x0�0)=s0.

� for k = 1; : : : ;K

� compute (uk; vk; �k) solution of the system (12).

3 Linear multicommodity network-
ow problem

The Multicommodity network problems appear when di�erent commodities share a com-
mon network. These problems are generally very di�cult to solve, not because of their large
scale, but also because it is not easy to handle the con
icts between several commodities
on the same network [CMR94]. There are numerous models in applied optimization that
involve multicommodity systems [Ass78], [GGSV97], [LSV95a], [LSV95b]. The Linear mul-
ticommodity network-
ow problem is the most often studied problem in multicommodity
optimization [Ken78],[AMO93] and [CL97].
This problem consists of the determination of the most economical way of using the available
transmission capacities in order to route a tra�c matrix through the network.
The best complexity bound known for multicommodity problems is provided by an interior

INRIA



SOLVING MULTICOMMODITY PROBLEMS 13

point algorithm [KV96], though, as yet, no e�cient implementation had been obtained. A
variant of Karmarkar's projective algorithm is applied in [KKR93], using a preconditioned
conjugate gradient (PCG) solver. Contrarily to the preconditioner presented in [KKR93]
that did not take advantage of the multicommodity structure, the one proposed in [CG90]
exploit this structure. Recently Castro presented in [Casar] a specialization of an interior
point algorithm to multicommodity 
ow problems. He uses both a preconditioned conjugate
gradient solver, and a sparse Cholesky factorization, to solve a linear system of equations at
each iteration of the algorithm.

3.1 Framework

Let G(V;E) be a directed graph, where V is a set of p nodes and E is a set of n arcs, and
let K be a set of K commodities to be routed through the network represented by G.
Each commodity k, for k 2 K, has a unique source ok and a unique sink pk. We denote by
A 2 IR(p�1)�n the matrix obtained by deleting an arbitrary row from the node-arc incidence
matrix of G. (It is well known that this matrix is full row rank.) Each column of A is related
to an arc e 2 E and has only two nonzero (1;�1) coe�cients in those rows associated with
(respectively) the origin and the destination nodes of e. We shall consider that the arcs of
the network have a capacity b0 (2 IRn) for all commodities. We denote by bk 2 IRp�1, for
k 2 K, a vector of supplies/demands for commodity k at the nodes of the network de�ned
by:

bki =

8<
:

+rk if i = ok;
�rk if i = pk;
0 elsewhere;

(22)

where rk is the value of the 
ow of the kth commodity. Let us assume that an unitary cost
vector c = (ce)e2E is given and that this cost does not depend on commodity. We shall
distinguish two models of (LMNP): the node-arc model and the arc-path one.

3.2 Node-Arc Formulation

The node-arc formulation of (LMNP) can be expressed as follows:8>>>>>>>><
>>>>>>>>:

Min
x1;:::;xK

cT
KX
k=1

xk;

(i) x0 +
KX
k=1

xk = b0;

(ii) Axk = bk; k = 1; : : : ;K;
(iii) xk � 0; k = 0; : : : ;K;

(23)

where

� xk is a IRn-vector, xke is the 
ow carried by commodity k on arc e, (e 2 E),
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� x0 is the residual capacity vector (x0 2 IRn
+).

In the node-arc formulation, the decision variables are the 
ow of commodities on each
arc. This formulation associates to each commodity k 
ow conservation (23.ii) and non-
negativity (23.iii) constraints. The equations (23.i) refer to the capacity constraints. The
node-arc formulation of (LMNP) (23) has p̂ = K�(p�1)+n constraints and n̂ = (K+1)�n
variables. For real networks such as the Paris district transmission network, the number of
nodes can be larger than 100 and the number of arc larger than 300. If one assume that this
network has 1000 commodities, the size of the problem can be larger than 100300 constraints
and 300300 variables. So, the linear problem (23) is very large even for a small network.

We propose to specialize the method developed in the previous section to this problem.
Let us note that the system (23) corresponds to the system (2). Indeed, in the case of the
node-arc formulation of the linear multicommodity network-
ow problem, we have:

� for all i 2 f0; : : : ;Kg: ni := n and Bi := I(n).

� for all i 2 f1; : : : ;Kg: Ai := A, pi := p� 1 and ci = c.

� p0 := n and c0 := 0.

We refer to this specialization of predictor-corrector algorithm to node-arc formulation of
(LMNP) by the NAF algorithm.

3.3 Arc-path Formulation

The linear multicommodity network problem can be formulated in term of paths. The
decision variables become the 
ow components on paths. We denote by Ik the set of distinct
elementary paths between the source node ok and the sink node pk in G. We designate by
nk the cardinal of Ik (nk = jIkj). An element i of the set Ik is characterized by a IRn-
boolean vector f�ki g satisfying:

(�ki )e =

�
1 if e belongs to i ;
0 otherwise:

(24)

The variables x1; : : : ; xK , are now associated to elementary paths rather then to arcs. We
denote by xki the component of the commodity k carried by the path characterized by �ki .

The sum over i of the components xki is the value of the commodity k:
X
i2Ik

xki = rk: The

total 
ow of the commodity k is the IRn-vector
X
i2Ik

xki �
k
i 2 IRn. We recall that the IRn-

vector x0 is the residual capacity vector.
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The arc-path formulation of the (LMNP) consist of the following program:8>>>>>>>>>><
>>>>>>>>>>:

Min
x1;:::;xK

cT
KX
k=1

�kxk;

(i) x0 +
KX
k=1

�kxk = b0; (�0)

k 2 f1; : : : ;Kg
�

(ii) !kxk = rk; (�k)
(iii) xki � 0; i 2 Ik; (ski )

(iv) x0 � 0; (s0)

(25)

where for all k 2 K; !k is the IRnk row-vector de�ned by !ki = 1; for i = 1; : : : ; nk. We can
recognize the same type of constraints as in the node-arc formulation. Indeed, the equations
(25.ii) and (25.i) represent respectively the 
ow conservation constraints associated to each
commodity and the capacity constraints.
The general formulation (2), is specialized for the (LMNP) arc-path formulation (25) by
setting:

� for all k 2 f1; : : : ;Kg: ck := (�k)T c, (ck 2 IRnk), Bk = �k, bk = rk, Ak = !k and
pk = 1.

� B0 = I(n) and p0 = n.

Then we can, as in the case of the node-arc formulation, adapt the algorithm described in
the general framework of linear optimization with coupling constraints problems to the arc-
path formulation of LMNP. We refer to this adaptation by APF. The arc-path formulation
associates to each elementary path a variable. The number of variables may then increase
exponentially with the size of the graph. This constitutes the main shortcoming for this
formulation. However, in practice, an optimal solution is carried by a relatively small number
of paths. Indeed the formulation (25 has only n +K constraints. This implies that (if (25)
has a solution) an optimal solution that has at most n+K strictly nonzero variables exists.
Then no more than n+ k di�erent paths are needed to satisfy all the requested 
ow.
We propose to take advantage of this property by limiting the routing problem LMNP to a
subset of elementary paths generated by an iterative process. Indeed, the path matrixes �k

are only known implicitly. However, the form of such columns is known, and they can be
generated as needed during the course of the algorithm- hence the name column generation
[FF58, Jew58]. The scheme of column generation algorithm requires one to solve successive
linear programs of smaller size. We use the algorithm PCLMNP for solving these programs.
The algorithm APF does not take into account all the sets Ik. It starts with a subset Ik0 and
adds at each iteration j, no more than one path �k;j to the subset Ikj . In other words APF

introduce at each iteration j, no more than one column to the matrix �k . By reducing the
number of the columns, we reduce also the number of variables.
We refer to the stage of paths (columns) generation as oracles. The Master Program consist
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of the resolution of a routing problem using a limited number of paths. Indeed, at each
iteration j a commodity k can be carried only by paths belonging to a subset Ikj .
At each outer iteration j, algorithm APF solves the following master program:8>>>>>>>>>>><

>>>>>>>>>>>:

Min
x1;:::;xK

cT
KX
k=1

�k
j
xk;

(i) x0 +
KX
k=1

�k
j
xk = b0;

k 2 f1; : : : ;Kg
(

(ii) !k
j
xk = rk;

(iii) xki � 0; i 2 Ij
k
;

(iv) x0 � 0;

(26)

where

� nk
j
= jIkj j,

� !k
j 2 IRnk

j

and !k
j

i = 1; i = 1; : : : ; nk
j
,

� xk 2 IRnk
j

,

� �k
j
is the matrix whose columns are �ki ; i 2 Ikj .

The optimality system associated to this problem is:8>>>>>>>>>>>><
>>>>>>>>>>>>:

x0s0 = 0;

x0 +
KX
k=1

�k
j
xk = b0;

�0 = s0;

k 2 f1; : : : ;Kg

8><
>:

xksk = 0;

!k
j
xk = rk;

(ck + �0)T�k
j
+ !k

j
�k = sk;

xk; sk � 0; k = 0; : : : ;K;

(27)

We denote by (xj; sj ; �j) the solution of problem (26) given by predictor-corrector algo-
rithm. It satis�es the optimality system (27). We introduce (~x; ~s; ~�) de�ned by :

8>>>>>>>>><
>>>>>>>>>:

~x0 = x0
j
;

~s0 = s0
j
;

~�0 = �0
j
;

for k 2 f1; : : : ;Kg

8>><
>>:

~xki =

�
xki if i 2 Ikj ;

0 else.

~ski = (ck + �0
j
)T�ki + �k

j
; i 2 Ik:

~�k = �k
j
:

(28)
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For all commodity k 2 K, we designate by �k;j a IRn-boolean vector characterizing a shortest

path between ok and pk calculated with c
k+�0

j
as unitary cost vector. We have the following

classical result:

Lemma 2 the following two statements are equivalent

(i) the point (~x; ~s; ~�) de�ned by (28) is solution of (LMNP)
(ii) for all commodity k in f1; : : : ;Kg we have:

(ck + �0;j)T�kj + �k � 0: (29)

Proof 2 Let us �rst check that (i) imply (ii):
If (~x; ~s; ~�) is a solution of (25), then it satis�es the associated optimality system. We obtain
this optimality system, by setting Ikj = Ik in (27).

The dual constraint (ck + �0)T�ki + �k � 0 is satis�ed for all paths in Ik. In particular it
remains true for �k;j.
Let us check now that (ii) leads to (i):
For all paths in Ik we have (ck + �0)T�ki � (ck + �0)T�k;j.

If (ck + �0
j
)T�k;j + �k

j � 0 then (ck + �0
j
)T�ki + �k

j � 0 for all i 2 Ik.
Then (~x; ~s; ~�) veri�es the optimality system associated to (LMNP).

Management of the sets Ik

At each outer iteration j and for all commodityk in f1; : : : ;Kg, the algorithmAPF computes
a shortest path �k;j. When the dual variable associated to this path is negative ((ck +

�0
j
)T�k;j + �k

j
< 0), the algorithm adds the path �k;j to the set Ikj : Ikj+1 = Ikj + �k;j.

Now we are ready to state the (APF) algorithm.
Algorithm APF

� Initialisation: j = 0, for k = 1; : : : ;K:

{ Solve shortest path problems: Ik0 .

{ If
KX
k=1

�k
0
rk > b0 then add arti�cial vector capacity and use Big M method.

� Master program: Solve an (LMNP) limited to subsets I1j ; : : : ; I
K
j by predictor cor-

rector algorithm PCLMNP.
Deduce (~x; ~s; ~�), (28).

� Oracle: for k = 1; : : : ;K:
Solve shortest path problem: Compute �k;j shortest path between ok and pk calculated

with ck + �0
j
.

� Stop test: test = 0,
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{ for k = 1; : : : ;K: if (ck + �0
j
)T�k;j + �k

j
< 0 then Ikj+1 = Ikj + �k;j and

test = test + 1.

{ if test > 0 then j = j + 1, go to 2, else Stop.

4 Numerical Results

In this paper, the numerical tests were performed in MATLAB environment. For this reason,
the computing time is not signi�cant.

4.1 Randomly generated Problems

4.1.1 Performance of algorithm NAF

We consider networks with n = 60 arcs and p = 30 nodes randomly generated. The number
of commodities varies up to 1000. We denote by K, ia and iw, respectively, the number of
commodities, the average value of the number of iterations and the number of iterations in
the worst case.
For each value of K 2 f10; 50; 100;500; 1000g, we generate randomly 10 networks.
The generation of a problem consists of the generation of node-arc incidence matrix of the
graph G = (V;E).
The starting point is x0 = s0 = 1 and �0 = 1. The algorithm stops when � < 10�10. The
numerical results obtained by NAF are summarized in the table 1.

K ia iw
10 18.8 20
50 22.7 25
100 24.2 26
500 29 32
1000 35.20 39

Table 1: Performance of the algorithm NAF on Networks with 30 nodes and 60 arcs

4.1.2 Comparison between NAF and APF performances

We generate randomly 5 LMNP. We test the performances of the algorithms for the case
p = 30; n = 70; and K = 25.
We obtain the following table: where

� t1 is the computing time with (NAF).

� t2 is the computing time with (APF).
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K t1 t2 i1 i2
pb1 376 80 42 15
pb2 348 63 40 12
pb3 324 80 37 15
pb4 314 82 36 15
pb5 305 82 37 15

Table 2: Comparison between NAF and APF performances

� i1 is the number of iterations with (NAF).

� i2 is the number of iterations with (APF).

We establish that the algorithm APF needs (in average) the one fourth of the computing
time required by NAF.

4.2 Tests With Real Data

We report in this section some numerical results obtained by testing these algorithms with
instances using real data from Paris district area transmission network. Since the informa-
tion is classi�ed, we are not allowed to give details about the data. We can only give the
size of the problems in their standard form (see Table 3).
Our implementation of the algorithm APF uses the \Big M" method. The capacity of the
generated paths may not be su�cient to meet all demands and one must add a supplement
capacity with a very large cost (M) to assure the routing of the demands. Test NOE26 is
particularly interesting. It is a highly degenerate problem as all the routing costs ci are
equal to 1. Moreover, all the links are saturated in the optimal solution.
Test DRIF is encumbering because of the memory requirements. This explains why algo-
rithm NAF was not able to treat this problem.

p n K p̂ n̂ name

26 42 257 6981 34994 NOE26

119 302 900 108302 758102 DRIF

Table 3: Size of problems solved

Table 4 shows results obtained by NAF. In the table Iter is the number of iteration of
the algorithm.

Unfortunately, we were not able to solve the problem DRIF because of the shortage of
memory mentioned before.
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Iter optimal cost computing time (sec) name

17 9879.004 2472.883 NOE26

X X X DRIF

Table 4: Performance of the algorithm NAF

The results for APF are displayed in Table 5 where Outer Iter is the number of master
programs solved and Inner Iter, the iteration number of predictor-corrector algorithm.

Outer Iter Inner Iter optimal cost computing time (sec) name

5 68 9879.022 1501.117 NOE26

5 79 6040.601 51352.37 DRIF

Table 5: Performance of the algorithm APF

This numerical results show the superiority of APF.

5 Conclusion

We have developed routing algorithms for node-arc and arc-path formulation and we have
obtained promising results. They both are suitable for a distributed implementation on a
massively parallel computer. The algorithm NAF proposed in this paper can be improved
because the aggregation of the commodities is possible in the case of node-arc formulation.
Since the cost per unit of 
ow on a given link does not depend on the commodity, all the
commodities witch have a common endpoint can be merged. Therefore the problem reduces
to a number of commodities not larger than p the number of nodes.

p n K p̂ n̂ name

26 42 24 690 3306 NOE26-merged

119 302 63 7862 53348 DRIF-merged

Table 6: size of aggregated dates

DRIF problem can then be solved with NAF. We can also improve both of NAF and APF
algorithms by solving the Newton Direction approximatively. The matrix M is symmetric
positive de�nite. Then one can use an iterative method to solve the reduced system as the
conjugate gradient method.
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