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Abstract

In this paper, we present a new smoothing approach to solve general nonlinear
complementarity problems. Under the P0 condition on the original problems, we
prove some existence and convergence results . We also present an error estimate
under a new and general monotonicity condition. The numerical tests confirm the
efficiency of our proposed methods.
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1 Introduction

Consider the nonlinear complementarity problem (NCP), which is to find a solution of the
system :

x ! 0, F (x) ! 0 and x!F (x) = 0, (1.1)

where F : Rn −→ Rn is a continuous function that satisfies some additional assumptions
to be precise later.

This problem has a number of important applications in operations research, economic
equilibrium problems and in the engineering sciences [FP] . It has been extensively stud-
ied and the number of proposed solution methods is enormous eg ([FMP] and references
therein). There are almost three different classes of methods: equation-based methods
(smoothing) , merit functions and projection-type methods.
Our goal in this paper is to present new and very simple smoothing and approximation
schemes to solve NCPs and to produce efficient numerical methods. These functions are
based on penalty functions for convex programs.

Almost all the solution methods consider at least the following important and standard
condition on the mapping F ( monotonicity) : for any x, y ! 0,

(x − y)!(F (x) − F (y)) ! 0. (1.2)
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We will assume that

(H0) F is a (P0)−function

to prove the convergence of our approach. This assumption is weaker than monotonicity.
We recall the following definitions of (P0)- and (P ) -functions. We say that F : Rn → Rn

is a (P0)-function if

max
i:xi "=yi

(x − y)i(Fi(x) − Fi(y)) ! 0, x, y ∈ R
n,

and F is a (P )-function if

max
i:xi "=yi

(x − y)i(Fi(x) − Fi(y)) > 0, x, y ∈ R
n.

We start with an easy result. We define component-wise the function Fmin(x) := min(x, F (x))
with Fmin,i(x) = min(xi, Fi(x)) for any i : 1...n.

This function possesses the same properties as F

Lemma 1.1. Assume that F is a (P0) (respectively (P ))-function then Fmin(x) := min(x, F (x))
is also (P0) (respectively (P ))-function.

Proof. Assume that F is a (P0)-function. For any x, y ∈ Rn, there exists i such that
xi $= yi and (xi − yi)(Fi(x) − Fi(y)) ! 0. We can assume xi > yi. Then Fi(x) ! Fi(y).
So Fi(x) ! min(yi, Fi(y)) and xi ! min(yi, Fi(y)). Then min(xi, Fi(x)) ! min(yi, Fi(y)).
Thus (xi − yi)(Fmin,i(x) − Fmin,i(y)) ! 0. Then Fmin is a (P0)-function. The proof is
analogue if F is a (P )-function. "

An other ssumption that will be useful in our approach is that the solution set is
compact

(H1) Z := {x ! 0, F (x) ! 0, x!F (x) = 0} is nonempty and compact.

Remark 1.1. Under some sufficient conditions, the assumption (H1) is satisfied. Note
that this set may be empty, for instance if −F (x) > 0 for any x ∈ Rn even when F is
continuous and monotone. Such counter-example is easy to show, for example :F (x) = −1

x+1
for x ! 0 and F (x) = −1 if x # 0.

We give in the following lemma an example of sufficient condition on the mapping F
to insure (H1).

Lemma 1.2. Assume that F is continuous and monotone on Rn. Moreover, we assume
that:

1. There exits y ∈ Rn with F (y) > 0 .

2. There exist constants c,M > 0 such that for any x, |x|1 ! M , |F (x)| # c|x|1 with
c < m(F (y))/|y| where m(F (y)) = mini Fi(y).

Let ε > 0. Then Zε := {x ! 0, F (x) ! 0, x!F (x) # ε} is compact (may be empty).
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Proof. Since F is continuous, the set Zε is closed. To show the compactness, it is enough
to show the boundedness of Z. The monotonicity property implies for any x ∈ Zε:

x!F (y) # x!F (x) − y!F (x) + y!F (y) # |y||F (x)| + |y||F (y)| + ε.

Let x ∈ Zε and |x|1 ! M , then

m(F (y))|x|1 #

n
∑

i=1

xiFi(y) # c|y||x|1 + |y||F (y)| + ε.

Thus
(m(F (y)) − c|y|)|x|1 # |y||F (y)| + ε.

Since κ := m(F (y)) − c|y| > 0, we get

|x|1 # (|y||F (y)| + ε)|/κ.

Thus
|x|1 # max(M, (|y||F (y)| + ε)/κ).

So Zε is bounded, hence compact. "

Remark 1.2. All continuous monotone bounded function F satisfying the condition (1)
also satisfies condition (2) of the lemma. Indeed there exists R > 0 such that for any
M > 0 and any x such that |x|1 ! M ,

|F (x)| # R #
R

M
|x|1

Let c := R
M , it enough to choose M large enough such that c < m(F (y))/|y|.

This condition (2) allows us to consider a family of functions F satisfying some sub-
linear growth at infinity.

The organization of the paper is as follows. In Section 2, we define the smoothing
functions and the approximation technique. In Section 3, we give a detailed discussion
of the properties of the smoothing function and the approximation scheme. Section 4
is devoted to the proof of convergence and the error estimate. Numerical examples and
results will be reported in the last section.

2 The smoothing functions

We start our discussion by introducing the function θ with the following properties (See
[ACH, Had]). Let θ : R → (−∞, 1) be an increasing continuous function such that θ(t) < 0
if t < 0, θ(0) = 0 and θ(+∞) = 1. For instance θ(1)(t) = t

t+1 , t ! 0 and θ(1)(t) = t if t < 0,

θ(2)(t) = 1 − e−t, t ∈ R.
This function ”detects” if t = 0 or t > 0 i.e. if t ! 0 in a ”continuous way”. The

ideal function will be the function θ(0)(−∞) = −∞, θ(0)(t) < 0 if t < 0, θ(0)(0) = 0 and
θ(0)(t) = 1 for t > 0. But doing so, at least a discontinuity at t = 0 is introduced. We
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smooth this ideal function θ(0) by introducing θr(t) = θ(t/r) for r > 0.
So that, θr(0) = 0, ∀r > 0, limr→0+ θr(t) = 1 for all t > 0 and limr→0+ θr(t) = inf θ =
θ(−∞) < 0 if t < 0. So limr→0+ θr behaves essentially as θ(0). Moreover, note that the
function θrcorresponding differentiates quantitatively the positive values of t: if 0 < t1 < t2
then 0 < θr(t1) < θr(t2) and conversely.

Now, let’s consider the following equation on the one-dimensional case. Let s, t ∈ R+

be such that
θr(s) + θr(t) = 1. (2.3)

For instance, let’s take θ(1). The equality (2.3) is then equivalent to

st = r2

So, when r tends to 0, we simply get st = 0. This limit case applied with s = x ∈ R+

and t = F (x) ∈ R+ gives our relation xF (x) = 0. Our approximation is x(r)F (x(r)) = r2.
So, for general θ, the aim of this paper is to produce, for each r ∈ (0, r0), a solution
x = x(r) ∈ Rn with x(r) ! 0 such that F (x(r)) ! 0 and

θr(x) + θr(F (x)) = 1. (2.4)

and to show the compactness of the set {x(r), r ∈ (0, r0)}. Hence by taking a subsequence
of x(r), we expect to converge to a solution of xF (x) = 0. The equation just above has to
be interpreted, in the multidimensional case, as

θr(x
(r)
i ) + θr(Fi(x

(r))) = 1, i : 1...n.

Note that the relation (2.4) is symmetric in x and F (x) and it can be seen as a fixed
point problem for the function Fr,θ(x) defined just below. Indeed, (2.4) is equivalent to

x = θ−1
r (1 − θr(F (x))) = rθ−1 (1 − θ(F (x)/r)) =: Fr,θ(x)

and also, by symmetry of the equation (2.3) (if any), we have the relations:

F (x) = θ−1
r (1 − θr(x)) = rθ−1 (1 − θ(x/r)) .

This fact may be of some interest for numerical methods. The speed of convergence
to a solution can be compared for different choices of θ.

Now, we propose another way to approximate a solution of the (NC) problem.

Let ψr(t) = 1 − θr(t). The relation (2.4) is equivalent to

ψr(x) + ψr (F (x)) = 1 = ψr(0).

Hence, the relation can be written as

ψ−1
r [ψr(x) + ψr(F (x))] = 0.
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Let ψ = ψ1 = 1 − θ. thus, we have

rψ−1

[

ψ
(x

r

)

+ ψ

(

F (x)

r

)]

= 0.

For the sequel, we set

Gr(x, y) := rψ−1
[

ψ
(x

r

)

+ ψ
(y

r

)]

.

First, we characterize solutions (x, y) of Gr(x, y) = 0 when θ satisfies some conditions
independent of F .

Let 0 < a < 1. We say that θ satisfies (Ha) if there exists sa > 0 such that, for all
s ! sa,

1

2
+

1

2
θ(as) # θ(s).

This condition is equivalent to

ψ(s) #
1

2
ψ(as), s ! sa.

Two examples:

1. Let θ(1)(t) = t
t+1 , t ! 0 and θ(1)(t) = t if t < 0 (But the case t < 0 is not useful

in this discussion). Then ψ(1)(t) = 1
t+1 if t ! 0 and ψ(1)(t) = 1 − t if t < 0. The

condition (Ha) is only satisfied with 0 < a < 1/2 and sa ! 1
1−2a .

2. Let θ(2)(t) = 1 − e−t, t ∈ R. Then ψ(2)(t) = e−t satisfies the condition (Ha) for any
0 < a < 1 with sa = ln 2

1−a .

Note that these functions ψ do not satisfies the condition (Ha) in the same range for
a. This has some consequence for the limite of Gr(s, t) as r goes to zero (See Th.2.2 and
Example 1 after the proof of Th.2.1).

Theorem 2.1. Assume that for some 0 < a < 1, the condition (Ha) is satisfied for θ. Let
s, t ∈ R. The two following statements are equivalent

1. limr→0 Gr(s, t) = 0

2. min(s, t) = 0.

The statement min(s, t) = 0 is equivalent to s = 0 # t or t = 0 # s. This is the reason
why we expect a solution of the (NC) problem with s = xi and t = Fi(x) by considering
the function Gr.

Proof. We asserts that Gr(s, t) # min(s, t) for any r > 0 and s, t ∈ R. Indeed, assume
that s # t i.e. s = min(s, t). Since ψ ! 0,

ψ(s/r) # ψ(s/r) + ψ(t/r)
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So, by the fact that ψ is non-increasing,

s/r ! ψ−1 (ψ(s/r) + ψ(t/r)) .

Then
Gr(s, t) # s.

The assertion is proved. We now prove (1) implies (2). Let s, t ∈ R, we have assumed that
limr→0 Gr(s, t) = 0 thus min(s, t) ! 0. By symmetry, we can suppose that s = min(s, t).
We deduce the result by contradiction. Assume that s > 0. Since ψ is non-increasing,

ψ(s/r) + ψ(t/r) # 2ψ(s/r).

For r small enough, 2ψ(s/r) # ψ(as/r) because s/r goes to infinity. Whence

ψ(s/r) + ψ(t/r) # ψ(as/r).

Again since ψ is non-increasing,

as/r # ψ−1 (ψ(s/r) + ψ(t/r)) .

or equivalently (r small enough),

s # a−1Gr(s, t).

By assumption, limr→0 Gr(s, t) = 0 then s # 0. Contradiction. So s = 0 and the implica-
tion is proved.

We now prove the converse. Assume s = min(s, t) = 0. Then Gr(s, t) = rψ−1 (1 + ψ(t/r))
due to ψ(0) = 1. If t = 0, limr→0 Gr(s, t) = limr→0 rψ−1(2) = 0. If t > 0, limr→0 ψ(t/r) =
1 − limr→0 θ(t/r) = 0. Thus limr→0 Gr(s, t) = limr→0 rψ−1(1) = 0 by continuity of ψ−1.
The proof is completed.

Two examples:

1. Let θ(1)(t) = t
t+1 , t ! 0 and θ(1)(t) = t if t < 0. Then ψ(1)(t) = 1

t+1 if t ! 0 and

ψ(1)(t) = 1 − t if t < 0. For s > 0 and t > 0 such that 1
s + 1

t # 1
r , then

G1,r(s, t) =
st − r2

s + t + 2r
.

Note that the denominator is not zero when s, t are positive even in the case
s = t = 0. This is interesting fact for numerical simulation.

In that case limr→0 G1,r(s, t) = st
s+t . Note that this is not min(s, t). We can easily

prove that limr→0 G1,r(s, t) = 0 if s = 0 and t > 0 or t = 0 and s > 0.

If t, s > 0, the derivative in r of G1,r(s, t) is

−2br − 2r2 − 2a

(b + 2r)2
# 0

with a = st and b = s+ t. So G1,r(s, t) is non-increasing in r for fixed s, t > 0. Since
G1,r(s, t) # min(s, t) then limr→0 G1,r(s, t) always exists.



2 THE SMOOTHING FUNCTIONS 7

2. Let θ(2)(t) = 1 − e−t, t ∈ R. Then ψ(2)(t) = e−t and

G2,r(s, t) = −r log(e−s/r + e−t/r).

for any s, t ∈ R,
lim
r→0

G2,r(s, t) = min(s, t).

Indeed, if s = min(s, t) then −r log 2 + s # G2,r(s, t) because e−s/r + e−t/r # 2e−s/r.
Thus

−r log 2 + min(s, t) # G2,r(s, t) # min(s, t).

So, we deduce the expected limit. The assertion of Th.2.1 is clealy satisfied.

It is an easy exercice to show that these two functions G1,r and G2,r and there limit
function G1,0, G2,0 are concave functions on (R2)+. (Pb: Is it always true for any θ?)

Now, we focus on the case where θ satisfies (Ha) for all a ∈ (0, 1).

Theorem 2.2. Assume that θ satisfies (Ha) is for all a ∈ (0, 1). Then for any s, t > 0,

lim
r→0

Gr(s, t) = min(s, t).

Proof. We use essentially the arguments of Th.2.1. We have seen in the course of the proof
that Gr(s, t) # min(s, t) for any r > 0, s, t ∈ R and any ψ.

Now we fixe s, t > 0 and assume that s = min(s, t) > 0. For the lower bound, we have
for any fixed 0 < a < 1, since ψ is non-increasing,

ψ(s/r) + ψ(t/r) # 2ψ(s/r) # ψ(as/r)

for any r > 0 such that s/r ! sa. Again by monotonicity of ψ,

as/r # ψ−1 (ψ(s/r) + ψ(t/r)) .

So, for any 0 < a < 1, there exists ra > 0 such that, for any 0 < r < ra,

as # Gr(s, t).

We deduce, for any 0 < a < 1,

amin(s, t) = as # lim inf
r→0

Gr(s, t) # lim sup
r→0

Gr(s, t) # min(s, t)

We get the result with a → 1. This concludes the proof.

Note that θ(1) doesn’t satisfy the condition (Ha) for any 0 < a < 1. We have seen
above that limr→0 Gr(s, t) = st

s+t , (s, t > 0) which is strictly less than min(s, t).

We denote by f(r) := Gr(s, t) with fixed s, t ∈ R. We want to prove that G0(s, t) :=
limr→0+ f(r) exists under some natural condition on ψ with s, t > 0. This existence
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is insured if f(r) is non-increasing on some interval (0, ε) that is f ′(r) # 0. We give
a necessary and sufficient condition on ψ to fulfil this last condition. Let ψ as above
(ψ = 1 − θ) and let V := (−ψ′ oψ−1) × ψ−1. We say that V is locally sub-additive at 0+

if there exists η > 0 such that, for all 0 < α, β, α+ β < η, we have

V (α + β) # V (α) + V (β).

We can express the fact that f ′(r) # 0 is equivalent to this property on V .

Theorem 2.3. Let ψ = 1 − θ with θ : R → (−∞, 1) of class C2 such that θ′ > 0 and
θ′′ # 0 (i.e. ψ convex). Suppose that V := (−ψ′ oψ−1)×ψ−1 is locally sub-addditive at 0+.
Then for any s, t > 0, G0(s, t) := limr→0+ f(r) exists and G0(s, t) # min(s, t). Moreover,
if there exists r0 > 0 such that f ′ # 0 and rf ′(r) # f(r)− f(0+), 0 < r # r0 then, for any
r ∈ (0, r0),

− r
(f(0+) − f(r0))

r0
+ f(0+) # f(r) # f(0+). (2.5)

Comment: The bounds of f(r) in (2.5) give useful information for numerical simula-

tion because of the bounds 0 # f(0+) − f(r) # r
(f(0+)−f(r0))

r0
# r (min(s,t)−f(r0))

r0
.

Proof. Let f(r) := Gr(s, t) with s, t > 0 and r > 0. Let H := −ψ′ = θ′ > 0 and
H ′ = θ′′ # 0. So H is positive and non-increasing. A simple computation gives us

rf ′(r) = f(r) −
sH(s/r) + tH(t/r)

(H oψ−1)(ψ(s/r) + ψ(t/r))
.

The condition f ′(r) # 0 is equivalent to

ψ−1(ψ(s/r) + ψ(t/r)) #

s
rH( s

r ) + t
rH( t

r )

(H oψ−1)(ψ(s/r) + ψ(t/r))
.

Let α = ψ(s/r) and β = ψ(t/r). Then f ′(r) # 0 if and only if

ψ−1(α + β) #
ψ−1(α) (H oψ−1)(α) + ψ−1(β) (H oψ−1)(β))

(H oψ−1)(α + β)
.

Because H > 0, this condition is exactly the sub-additivity property

V (α + β) # V (α) + V (β). (2.6)

Now assume that V is locally sub-addditive at 0+ that is there exists η > 0 such that
for all 0 < α,β,α + β < η, we have V (α + β) # V (α) + V (β). Fix s, t > 0 and let ε > 0
such that 0 < max(ψ(s/ε),ψ(t/ε)) # η. This is possible because ψ(+∞) = 0+ and ψ > 0
(θ < 1). For r ∈ (0, ε), we have 0 < α := ψ(s/r) < η and 0 < β := ψ(t/r) < η since ψ is
decreasing. Hence, V (α+β) # V (α)+V (β) which implies f ′(r) # 0 for any 0 < r < ε. As
a consequence f(0+) := limr→0+ f(r) exists because f(r) is always bounded by min(s, t)
(see Proof of Thm. 2.1).
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Now, we prove (2.5). We have assumed that

rf ′(r) # f(r) − f(0+), 0 < r # r0.

So,
(

f(r)

r

)′

=
rf ′(r) − f(r)

r2
#

−1

r2
f(0+).

Let 0 < t < r0, by integration on [t, r0] of the inequality just above, we get

f(r0)

r0
−

f(t)

t
# f(0+)

(

1

r0
−

1

t

)

.

This can be written as

−t

[

f(0+) − f(r0)

r0

]

+ f(0) # f(t), 0 < t # r0.

This is the desired result and completes the proof.

Two examples: In both examples below, it is easy to check that V is sub-addditive
on (0,+∞).

1. ψ(1)(x) = 1
x+1 , x ! 1. So, V (y) = y − y2, 0 < y < 1 or V (y) = 1 − y, y > 1.

2. ψ(2)(x) = e−x, x ∈ R. So, V (y) = −y ln y, 0 < y < ∞.

The condition rf ′(r) # f(r) − f(0) with 0 < r small enough is satisfied by these two
examples. Let K = H oψ−1 = −ψ′ oψ−1. With the notations above, we have for α,β > 0:

rf ′(r) = f(r) −
sK(α) + tK(β)

K(α + β)
.

1. For ψ(1):

sK(α) + tK(β)

K(α + β)
= s

(

α

α + β

)2

+t

(

β

α + β

)2

! inf
0!λ!1

{sλ2+t(1−λ)2} =
st

s + t
= f(0).

In that case, we have equality:

rf ′(r) = f(r) − f(0).

2. For ψ(2): Since K = Id,

sK(α) + tK(β)

K(α + β)
=

sα+ tβ

α + β
! min(s, t) = f(0).

Thus rf ′(r) # f(r) − f(0).

Now, we give a necessary and sufficient condition on G(s, t) = ψ−1 (ψ(s) + ψ(t)) to be
concave in (s, t) with s, t > 0. First, note that G is concave iff Gr(s, t) = r G(s/r, t/r) is
concave. (G = G1 with this notation).
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Theorem 2.4. Assume that ψ : R → (0,+∞) satisfies ψ′ < 0, ψ′′ > 0 (i.e. convex). Let

L(α) := −
(ψ′ oψ−1)2

ψ′′ oψ−1
(α), α ∈ ψ(R).

The following statements are equivalent:

1. G is concave in the argument (s, t).

2. L is non-increasing and sub-additive i.e.

L(α+ β) # L(α) + L(β), α,β ∈ ψ(R).

Note that ψ(R) the image of R by ψ is a subset of (0,+∞).

Proof. To simplify the presentation of our results, we denote by α = ψ(s) and β = ψ(t),

W := W (α + β) = (ψ′ oψ−1)(α + β) < 0, α+ β ∈ ψ(R),

and
U := U(α + β) = (ψ′′ oψ−1)(α + β) > 0, α+ β ∈ ψ(R).

A rather boring computation gives us,

R := ∂s,sG(s, t) =
[

ψ′′(s)W 2 − (ψ′(s))2U
]

/W 3,

T := ∂t,tG(s, t) =
[

ψ′′(t)W 2 − (ψ′(t))2U
]

/W 3,

S := ∂s,tG(s, t) = −ψ′(s)ψ′(t)
U

W 3
.

It is well-known that G is concave iff R # 0, T # 0 and RT − S2 ! 0. For the condition
R # 0 (similarily for T # 0), we get due to the fact that W 3 < 0,

ψ′′(s)W 2 ! (ψ′(s))2U.

This can written as

−
(ψ′(s))2

ψ′′(s)
! −

W 2

U
.

That is, with s = ψ−1(α) and t = ψ−1(β),

L(α) ! L(α + β)

This expresses the fact that L is non-increasing.

For the condition RT − S2 ! 0, we obtain after simplifications:

W 6(RT − S2) = ψ′′(s)ψ′′(t)W 4 −
[

ψ′′(s)(ψ′)2(t) + ψ′′(t)(ψ′)2(s)
]

W 2U.
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By similar manipulations as in the case R # 0, we can express the condition RT −S2 ! 0
by

L(α+ β) # L(α) + L(β), α,β,α + β ∈ ψ(R).

that is L is sub-additive. The proof is completed.

Note that T # 0 iff R # 0. Indeed, R # 0 iff L is non-increasing. Thus, by symmetry
arguments in (s, t), T # 0 iff L is non-increasing.

An examination of the two examples above leads to the following important remark.
We compute the functions L for the examples ψ(1)(x) = 1

x+1 and ψ(2)(x) = e−x and

obtain L1(α) = −1
2α and L2(α) = −α. They are additive functions ! It suggests to

find a one parameter family of function φλ giving as particular cases the functions ψ(1)

and ψ(2). This can be done by solving the equation RT − S2 = 0. Indeed, additivity
of L exactly correspond to this equation. The equation RT − S2 = 0 can be written as
L(α) = − 1

λα, λ > 0 (L is non-increasing) or equivalently

(ψ′)2 =
1

λ
ψ ψ′′.

First case: λ > 1. We obtain as solution of this equation

φλ(x) =
1

(c1x + 1)
1

λ−1

, x >
−1

c1
,

for some c1 > 0.

Second case λ = 1: this case has to be solved independently, we get

φ1(x) = e−Dx, x ∈ R,

for some D > 0. This case can be seen as a limit case as λ → 1+. The function φ1 is
different of nature of the functions φλ,λ > 1.

The condition RT − S2 = 0 introduces a family of new examples of ψ satisfying the
conditions of Theorem 2.4 namely φλ. This condition is exactly det (HessG) = 0. That
is the Hessian has an eigenvalue µ1 = 0 and µ2 # 0 (since the trace of the Hessian matrix
is R + T # 0).

3 Convergence and error estimate

Let Hr(x) := Gr(x, F (x)) = (Gr(xi, Fi(x)))n
i=1 with Gr defined as above. When F is a

(P0)-function, we can easily prove the following result.

Lemma 3.1. Assume that F is a (P0)-function then Hr is (P )-function for any r > 0.

Proof. For any x, y ∈ Rn, there exits i : 1...n such that xi $= yi. We can assume that
xi > yi and Fi(x) ! Fi(y). Since ψ is decreasing : ψ(xi/r) < ψ(yi/r) and ψ(Fi(x)/r) #

ψ(Fi(y)/r). Consequently, ψ(xi/r) + ψ(Fi(x)/r) < ψ(yi/r) + ψ(Fi(y)/r). Again by the
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monotonicity of ψ−1, Gr(xi, Fi(x)) > Gr(yi, Fi(y)). Hence, Hr is (P )-function for any
r > 0.
So that, when the assumptions of Theorem 2.3 are satisfied, we obtain the following
convergence result.

Theorem 3.1. Under the assumptions of Theorem 2.3, assume that F is a (P0)-function
and that (H1) is satisfied (The solution set of the NCP is nonempty and compact).
(i) There exists an r̂ > 0 such that for any 0 < r < r̂, Hr(x) = 0 will have a unique
solution x(r), the mapping r → x(r) is continuous on (0, r̂), and
(ii) lim

r→0
dist(x(r), Z ) = 0.

Proof. This is a dierct application of ([Se-Ta] Theorem 4 (2)).

Remark 3.1. Under the assumptions of Theorem 2.4, we can prove an other convergence
result based on the smoothing thechnique disscussed in [BT].

When using θ ≥ θ(1) on R+ (this is the case of θ(2)for example), we can prove an estimate
for the error term ||x∗ − x(r)|| between the solution x∗ and the approximation x(r) under
an assumption of monotonicity of F .

Proposition 3.1. Assume that θ ≥ θ(1) on R+, that x∗ is a solution of < x∗, F (x∗) >= 0
and x(r) is a nonnegative solution of Hr(x) = 0.

(i) x(r)
i Fi(x(r)) ≤ r2 ∀i = 1 . . . n

(ii) If F satisfies the condition:

h(||x − y||) # < x − y, F (x) − F (y) >

with h : R+ −→ R such that h(0) = 0 and there exists ε > 0 such that h : [0, ε) −→ [0, η)
is an increasing bijection. Then there exists r0 > 0 such that for any r ∈ (0, r0),

||x∗ − x(r)|| # h−1(nr2). (3.7)

The inequality (3.7) gives the maximal behavior of the error in terms of the function h.

Proof. (i) x(r) satisfies Hr(x(r)) = 0, so that

θ(
x(r)

i

r
) + θ(

Fi(x(r)

r
) = 1, i : 1...n.

and since θ ≥ θ(1), we obtain

θ(1)(
x(r)

i

r
) + θ(1)(

Fi(x(r)

r
) # 1, i : 1...n.

Then, a simple calculus yields to

x(r)
i Fi(x

(r)) ≤ r2 i : 1...n.
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(ii) We have
< x∗ − x(r), F (x∗) − F (x(r)) >=

< x∗, F (x∗) > − < x∗, F (x(r)) > − < (x(r), F (x∗) > + < x(r), F (x(r)) > # nr2.

Indeed, the first term of the R-H-S is zero, the two middle terms are non-positive and the
last term is nr2. So, by monotonicity,

h(||x∗ − x(r)||) # nr2

Let r0 such that r2
0 < η. Since h is a bijection from [0, ε) onto [0, η) and h−1 is increasing,

we obtain
||x∗ − x(r)|| # h−1(nr2).

The proof is completed.

4 Numerical results

In order to verify the theoretical assertions, we present some numerical experiments for
two smoothing approaches using the θ functions θ(1) and θ(2). We first consider a simple
2-dimensional problem which is analytically solvable where

F (x, y) = (2 − x − x3, y + y3 − 2)T .

The unique optimal solution for this problem is (0, 1).
The following figure presents the evolution of the second coordinate of the iterates for the
two smoothing functions. The optimal solution was reached up to a tolearance of 10−10 in
no more than 3 iterations. We use the updating strategy for the penalization parameter
as precised later. The red and green points correspond respectively to the iterates of the
smoothing method θ(1) and θ(2).

Figure 4.1: Evolution of (y, F2(x, y), r).
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We also consider a set of 10 NCP test problems with different and varying number of
variables.
For each test problem and each smoothing function, we use 11 different starting points: a
vector of ones and 10 uniformly generated vectors with entries in (0, 20).
The starting value for the smoothing parameter is fixed with respect to the theoretical
properties as

r0 = max(1,
√

max
1≤i≤n

|x0
i • Fi(x0)|).

This parameter is then updated as follows

rk+1 = min(0.1rk, (rk)2,
√

max
1≤i≤n

|xk
i • Fi(xk)|)

until the stopping rule
max
1≤i≤n

|xk
i • Fi(x

k)| ≤ 10−8

is satisfied.

Precise descriptions of the test problems P1 and P2 can be found in [HW]. P3 is a test
problem from [LZ] while P4 and P5 can be found in [DY] , these two problems correspond
to a non-degenerate and a degenerate examples of Kojima-Shindo NCP test problems
[KS]. The other test problem are described in[Tin, Har]. They correspond respectively
to the NASH-COURNOT test problems with n = 5 and n = 10 and to the HpHard test
problem with n = 20 , n = 30 and n = 100.
We used a standard laptop (2.5 Ghz, 2Go M) and a very simple matlab program using
the fsolve function.

We list in the following table, the worst obtained results. n stands for the number of
variables. OutIter is the number of outer iterations (number of changes of the smoothing
parameter r) and InIter corresponds to the total number of jacobian evaluations. Res.
and Feas. correspond to the following optimality and feasibility measures

Res. = max
1≤i≤n

|xi • Fi(x)|

and
Feas. = ‖min(x, 0)‖1 + ‖min(F (x), 0)‖1.

The results show that the second smoothing function is much more efficient and powerful.
This was foreseeable since

∀x ≥ 0 1 − δ0(x) ≥ θ(2)(x) ≥ θ(1)(x).
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Pb size OutIter InIter Res. Feas. cpu time (s)
(θ1, θ2) (θ1, θ2) (θ1, θ2) (θ1, θ2) (θ1, θ2)

P1 10 (6, 4) (65, 15) (5.6e−15, 2.5e−18) (1.1e−11, 1.3e−10) (0.22, 0.09)
100 (6, 4) (68, 19) (1.6e−14, 7.1e−22) (5.1e−13, 1.4e−14) (3.73, 1.19)
500 (6, 4) (83, 21) (5.4e−12, 1.6e−16) (1.9e−16, 1.4e−14) (31.15, 89.26, )
1000 (6, 5) (77, 40) (3.0e−14, 3.1e−14) (5.1e−18, 1.8e−17) (388.59, 201.43)

P2 10 (6, 4) (79, 23) (2.1e−15, 2.7e−15) (7.6e−11, 9.6e−19) (0.31, 0.11)
100 (6, 4) (88, 33) (1.84e−12, 1.0e−23) (7.1e−10, 3.1e−14) (4.83, 1.80)
500 (6, 4) (96, 41) (6.5e−10, 1.9e−16) (6.6e−09, 1.2e−12) (112.14, 49.59)
1000 (6, 5) (114, 67) (1.0e−17, 1.4e−23) (2.4e−08, 7.5e−18) (530.42, 328.15)

P3 10 (5, 4) (63, 15) (2.2e−12, 2.7e−21) (4.9e−08, 1.4e−11) (0.22, 0.09)
100 (5, 4) (71, 18) (7.9e−13, 2.6e−15) (9.5e−08, 4.5e−08) (3.10, 1.02)
500 (5, 4) (73, 21) (1.1e−14, 2.6e−16) (1.5e−07, 5.9e−09) (78.11, 26.15)
1000 (5, 4) (81, 26) (6.1e−13, 1.2e−15) (8.2e−10, 2.4e−16) (335.37, 138.23)

P4 4 (6, 4) (63, 20) (5.4e−12, 3.2e−17) (6.1e−09, 2.8e−12) (0.15, 0.08)

P5 4 (6, 4) (141, 23) (9.8e−14, 2.1e−23) (3.4e−07, 3.2e−12) (0.28, 0.06)

P6 5 (5, 3) (47, 17) (1.3e−14, 4.3e−27) (4.9e−12, 8.1e−17) (0.16, 0.07)

P7 10 (6, 4) (110, 33) (1.2e−16, 6.1e−19) (1.1e−12, 4.5e−14) (0.37, 0.14)

P8 20 (6, 5) (145, 66) (2.9e−13, 3.7e−21) (0, 4.4e−12) (1.33, 0.46)
P9 30 (6, 6) (106, 77) (3.7e−14, 9.6e−21) (4.4e−08, 6.4e−11) (2.24, 0.85)
P10 100 (6, 6) (209, 113) (8.5e−11, 2.1e−23) (2.1e−07, 1.8e−12) (42.09, 19.12)

Table 1: Results for θ1 and θ2
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